Recent advances in machine learning, combined with the increased availability of large natural language datasets, have made it possible to uncover semantic representations that characterize what people know about and associate with a wide range of objects and concepts. In this paper, we examine the power of word embeddings, a popular approach for uncovering semantic representations, for studying high-level human judgment. Word embeddings are typically applied to linguistic and semantic tasks, however we show that word embeddings can be used to predict complex theoretically-and practically-relevant human perceptions and evaluations in domains as diverse as social cognition, health behavior, risk perception, organizational behavior, and marketing. By learning mappings from word embeddings directly onto judgment ratings, we outperform a similarity-based baseline and perform favorably compared to common metrics of human inter-rater reliability. Word embeddings are also able to identify the concepts that are most associated with observed perceptions and evaluations, and can thus shed light on the psychological substrates of judgment. Overall, we provide new methods and insights for predicting and understanding high-level human judgment, with important applications across the social and behavioral sciences.
People make subjective judgments about the healthiness of different foods every day, and these judgments in turn influence their food choices and health outcomes. Despite the importance of such judgments, there are few quantitative theories about their psychological underpinnings. This article introduces a novel computational approach that can approximate people’s knowledge representations for thousands of common foods. We used these representations to predict how both lay decision-makers (the general population) and experts judge the healthiness of individual foods. We also applied our method to predict the impact of behavioral interventions, such as the provision of front-of-pack nutrient and calorie information. Across multiple studies with data from 846 adults, our models achieved very high accuracy rates ( r2 = .65–.77) and significantly outperformed competing models based on factual nutritional content. These results illustrate how new computational methods applied to established psychological theory can be used to better predict, understand, and influence health behavior.
Recent advances in machine learning, combined with the increased availability of large natural language datasets, have made it possible to uncover semantic representations that characterize what people know about and associate with a wide range of objects and concepts. In this paper, we examine the power of word embeddings, a popular approach for uncovering semantic representations, for studying high-level human judgment. Word embeddings are typically applied to linguistic and semantic tasks, however we show that word embeddings can be used to predict complex theoretically- and practically-relevant human perceptions and evaluations in domains as diverse as social cognition, health behavior, risk perception, organizational behavior, and marketing. By learning mappings from word embeddings directly onto judgment ratings, we outperform a similarity-based baseline as well as common metrics of human inter-rater reliability. Word embeddings are also able to identify the concepts that are most associated with observed perceptions and evaluations, and can thus shed light on the psychological substrates of judgment. Overall, we provide new methods and insights for predicting and understanding high-level human judgment, with important applications across the social and behavioral sciences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.