Despite the great achievements of Graph Neural Networks (GNNs) in graph learning, conventional GNNs struggle to break through the upper limit of the expressiveness of first-order Weisfeiler-Leman graph isomorphism test algorithm (1-WL) due to the consistency of the propagation paradigm of GNNs with the 1-WL.Based on the fact that it is easier to distinguish the original graph through subgraphs, we propose a novel framework neural network framework called Substructure Aware Graph Neural Networks (SAGNN) to address these issues. We first propose a Cut subgraph which can be obtained from the original graph by continuously and selectively removing edges. Then we extend the random walk encoding paradigm to the return probability of the rooted node on the subgraph to capture the structural information and use it as a node feature to improve the expressiveness of GNNs. We theoretically prove that our framework is more powerful than 1-WL, and is superior in structure perception. Our extensive experiments demonstrate the effectiveness of our framework, achieving state-of-the-art performance on a variety of well-proven graph tasks, and GNNs equipped with our framework perform flawlessly even in 3-WL failed graphs. Specifically, our framework achieves a maximum performance improvement of 83% compared to the base models and 32% compared to the previous state-of-the-art methods.
Document-level event argument extraction poses new challenges of long input and crosssentence inference compared to its sentencelevel counterpart. However, most prior works focus on capturing the relations between candidate arguments and the event trigger in each event, ignoring two crucial points: a) nonargument contextual clue information; b) the relevance among argument roles. In this paper, we propose a SCPRG (Span-triggerbased Contextual Pooling and latent Role Guidance) model, which contains two novel and effective modules for the above problem. The Span-Trigger-based Contextual Pooling (STCP) adaptively selects and aggregates the information of non-argument clue words based on the context attention weights of specific argument-trigger pairs from pre-trained model. The Role-based Latent Information Guidance (RLIG) module constructs latent role representations, makes them interact through roleinteractive encoding to capture semantic relevance, and merges them into candidate arguments. Both STCP and RLIG introduce no more than 1% new parameters compared with the base model and can be easily applied to other event extraction models, which are compact and transplantable. Experiments on two public datasets show that our SCPRG outperforms previous state-of-the-art methods, with 1.13 F1 and 2.64 F1 improvements on RAMS and WikiEvents respectively. Further analyses illustrate the interpretability of our model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.