Hyaluronan (HA) associates with proteins and proteoglycans to form the extracellular HA-rich matrices that significantly affect cellular behaviors. So far, only the heavy chains of the plasma inter-␣-trypsin inhibitor (ITI) family, designated as SHAPs (serum-derived hyaluronan-associated proteins), have been shown to bind covalently to HA. The physiological significance of such a unique covalent complex has been unknown but is of great interest, because HA and the ITI family are abundant in tissues and in plasma, respectively, and the SHAP-HA complex is formed wherever HA meets plasma. We abolished the formation of the SHAP-HA complex in mice by targeting the gene of bikunin, the light chain of the ITI family members, which is essential for their biosynthesis. As a consequence, the cumulus oophorus, an investing structure unique to the oocyte of higher mammals, had a defect in forming the extracellular HA-rich matrix during expansion. The ovulated oocytes were completely devoid of matrix and were unfertilized, leading to severe female infertility. Intraperitoneal administration of ITI, accompanied by the formation of the SHAP-HA complex, fully rescued the defects. We conclude that the SHAP-HA complex is a major component of the HA-rich matrix of the cumulus oophorus and is essential for fertilization in vivo.
We previously found that a covalent complex of SHAPs (serum-derived hyaluronan-associated proteins), the heavy chains of inter-␣-trypsin inhibitor family molecules, with hyaluronan (HA) is accumulated in synovial fluid of patients with rheumatoid arthritis, and the complex is circulated in patient plasma at high concentrations. How the SHAP-HA complex participates in this disease is unknown. To address this question, it is essential to clarify the structural features of this macromolecule. The SHAP-HA complex purified from synovial fluid of the patients by three sequential CsCl isopycnic centrifugations was heterogeneous in density, and the fractions with different densities had distinct SHAPto-HA ratios. Agarose gel electrophoresis and column chromatography revealed that there was no apparent difference in the size distribution of HA to which SHAPs were bound between the fractions with different densities. The SHAP-HA complex in the higher density fraction had fewer SHAP molecules per HA chain. Therefore, the difference between the fractions with different densities was due to a heterogeneous population of the SHAP-HA complex, namely the different number of SHAP molecules bound to an HA chain. Based on the SHAP and HA contents of the purified preparations, we estimated that an HA chain with a molecular weight of 2 ؋ 10 6 has as many as five covalently bound SHAPs, which could give a proteinaceous multivalency to HA. Furthermore, we also found that the SHAP-HA complex tends to form aggregates, judging from the migration and elution profiles in agarose gel electrophoresis and gel filtration, respectively. The multivalent feature of the SHAP-HA complex was also confirmed by the negative staining electron micrographic images of the purified fractions. Taken together, those structural characteristics may underlie the aggregate-forming and extracellular matrix-stabilizing ability of the SHAP-HA complex.
CS epitopes WF6 and 3B3 (+) are raised in serum of patients with both OA and RA and were thus distinct from serum HA. The results suggest that OA may be detected systemically as well as RA. The range of levels of CS epitopes detected in OA and RA was wide and correlation with any aspect of disease activity is yet to be determined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.