Drought susceptible rice cultivar PTT1 (Pathumthani1) was treated with drought (−72 kPa) and CPPU (N-2-(chloro-4-pyridyl)-N-phenyl urea) @ 5 mg/L at tillering and grain-filling stages. Plants were tested for the effect of synthetic cytokinin on the parameters influencing the process of photosynthesis. Exogenous spray of CPPU improved the stomatal conductance of rice leaves, which was severely reduced by drought. The abundance intensities of proteins, associated with the stomatal conductance (ZEP, NCED4, PYL9, PYL10, ABI5, SnRK4, Phot1, and Phot2), were also in agreement with the positive impact of CPPU on the stomatal conductance under drought stress. Among the photosynthetic pigments, Chl b contents were significantly reduced by drought stress, whereas CPPU treated plants retained the normal contents of Chl b under drought stress. Subsequently, we examined the abundance intensities of chlorophyll synthase and HCR proteins, implicated in the biosynthesis of chlorophyll pigments and the conversion of Chl b to Chl a, respectively. The results indicated a drought-mediated suppression of chlorophyll synthase. However, CPPU treated plants retained normal levels of chlorophyll synthase under drought stress. In addition, drought stress induced HCR proteins, which might be the cause for reduced Chl b contents in drought stressed plants. Further, CPPU treatment helped the plants sustain photosynthesis at a normal rate under drought stress, which was comparable with well-watered plants. The results were further confirmed by examining the abundance intensities of two key proteins, RAF1 and Rubisco activase, implicated in the assembly and activation of Rubisco, respectively. CPPU treatment reversed the drought mediated suppression of these proteins at both of the growth stages of rice under drought stress. Based on the results, it can be suggested that synthetic cytokinins help the plants sustain photosynthesis at a normal rate under drought stress by positively influencing the determinants of photosynthesis at a molecular level.
Oryza sativa cv. PTT1 (Pathumthani1) was treated with phenyl-urea-based synthetic cytokinin under drought stress. Soluble sugar contents were examined in rice flag leaves at tillering and grain-filling stages. The same leaf samples were used to analyze the differential abundance intensities of proteins related to metabolism and transport of soluble sugars, and the process of senescence. The results showed drought-induced accumulation of hexose sugars (glucose and fructose) in rice flag leaves, which could be corroborated with enhanced accumulation of MST8 under drought stress. On the other hand, cytokinin-treated plants maintained the normal contents of hexose sugar in their flag leaves under drought stress, alike wellwatered plants. In the case of sucrose, cytokinin treatment reduced its accumulation at tillering stage, but the results were reversed at the grain-filling stage, where the cytokinin-treated plants maintained significantly higher contents of sucrose under drought stress. Growth stage dependent variations in sucrose contents corroborated with the accumulation of SPS (SPS1, SPS2, and SPS5) proteins, implicated in sucrose biosynthesis. In our study, among the proteins involved in sucrose transport, SUT1 transporter was induced by drought stress at both the growth stages, whereas SUT2 transporter accumulated equally in all the treatments. However, cytokinin treatment reversed the effect of drought on the accumulation of SUT1. Similarly, SWEET5, and SWEET13 proteins, which were induced by drought stress treatment, were inhibited by cytokinin treatment. However, the accumulation SWEET6, SWEET7, and SWEET15 was not influenced by the treatment of cytokinin in the flag leaves of rice. In addition, cytokinin treatment reduced the leaf wilting, enhanced the fresh weight and grain yield, and curtailed the accumulation of proteins involved in drought-induced senescence. In conclusion, the cytokinin treatment had a positive agro-economic impact on the rice plants and provided better drought adaptability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.