Tumor suppressors refer to a large group of molecules that are capable of controlling cell division, promoting apoptosis, and suppressing metastasis. The loss of function for a tumor suppressor may lead to cancer due to uncontrolled cell division. Because of their importance, extensive studies have been undertaken to understand the different functional mechanisms of tumor suppressors. Here, we briefly review the four major mechanisms, inhibition of cell division, induction of apoptosis, DNA damage repair, and inhibition of metastasis. It is noteworthy that some tumor suppressors, such as p53, may adopt more than one mechanism for their functions.
Human tumor suppressor gene RIZ encodes two protein products, tumor suppressor RIZ1 and proto-oncoprotein RIZ2, which regulate cellular functions in a Yin-Yang fashion. The only structural difference between them is that RIZ2 lacks the N-terminal PR domain. In this study, we showed that RIZ1 mRNA expression level was elevated in stage IV of eight different types of cancer (stage III for prostate cancer), indicating that RIZ1 might play an important role in tumor metastasis, and the PR domain alone possessed anticancer activity.
Through alternative promoter usage, human retinoblastoma protein-interacting zinc finger gene RIZ encodes two different protein products, RIZ1 and RIZ2, which have been identified to be a tumor suppressor and a proto-oncoprotein, respectively. Structurally, the two protein products share the same amino acid sequences except that RIZ2 lacks an N-terminal PR domain with methyltransferase activity. Previous studies have shown that over-expression of RIZ2 is usually associated with depressed RIZ1 expression in different human cancers. It is generally believed that RIZ1 and RIZ2 regulate normal cell division and function using a "Yin-Yang" fashion and the PR domain is responsible for the tumor suppressing activity of RIZ1. In order to better understand the biological functions of the PR domain by determining its three-dimensional crystal structure, we expressed, purified and crystallized a construct of the PR domain (amino acid residues 13-190) in this study. The maximum size of the needle-shaped crystals was approximately 0.20 x 0.01 x 0.01 mm.
Dichlorohydroquinone dioxygenase (PcpA) is the ring-cleavage enzyme in the PCP biodegradation pathway in Sphingobium chlorophenolicum strain ATCC 39723. PcpA dehalogenates and oxidizes 2,6-dichlorohydroquinone to form 2-chloromaleylacetate, which is subsequently converted to succinyl coenzyme A and acetyl coenzyme A via 3-oxoadipate. Previous studies have shown that PcpA is highly substrate-specific and only uses 2,6-dichlorohydroquinone as its substrate. In the current study, we overexpressed and purified recombinant PcpA and showed that PcpA was highly alkaline resistant and thermally stable. PcpA exhibited two activity peaks at pH 7.0 and 10.0, respectively. The apparent kcat and Km were measured as 0.19 ± 0.01 s-1 and 0.24 ± 0.08 mM, respectively at pH 7.0, and 0.17 ± 0.01 s-1 and 0.77 ± 0.29 mM, respectively at pH 10.0. Electron paramagnetic resonance studies showed rapid oxidation of Fe(II) to Fe(III) in PcpA and the formation of a stable radical intermediate during the enzyme catalysis. The stable radical was predicted to be an epoxide type dichloro radical with the unpaired electron density localized on C3.
Through alternative promoter usage, human retinoblastoma protein-interacting zinc finger gene RIZ encodes two different protein products, RIZ1 and RIZ2, which have been identified to be a tumor suppressor and a proto-oncoprotein, respectively. Structurally, the two protein products share the same amino acid sequences except that RIZ2 lacks an N-terminal PR domain with methyltransferase activity. Previous studies have shown that over-expression of RIZ2 is usually associated with depressed RIZ1 expression in different human cancers. It is generally believed that RIZ1 and RIZ2 regulate normal cell division and function using a "Yin-Yang" fashion and the PR domain is responsible for the tumor suppressing activity of RIZ1. In order to better understand the biological functions of the PR domain by determining its three-dimensional crystal structure, we expressed, purified and crystallized a construct of the PR domain (amino acid residues 13-190) in this study. The maximum size of the needle-shaped crystals was approximately 0.20 x 0.01 x 0.01 mm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.