Overexpression of the transmembrane receptor tyrosine kinase ErbB2 is common in multiple malignancies, including breast and ovarian cancer. ErbB2 is resistant to degradation mediated by c-Cbl, the E3 ubiquitin ligase responsible for ligand-induced ubiquitination of ErbB1 (epidermal growth factor receptor). Because of its resistance to degradation, ErbB2 is the preferred dimerization partner for other members of the ErbB family, and its overexpression in vivo is associated with poor prognosis. We now show that the chaperonebinding ubiquitin ligase CHIP efficiently ubiquitinates and downregulates ErbB2. CHIP expression shortens the half-life of both nascent and mature ErbB2 protein. In vitro ubiquitination assay shows that CHIP serves as a ubiquitin ligase for ErbB2, and both exogenously expressed and endogenous CHIP coprecipitate with the kinase. Furthermore, CHIP association with ErbB2 requires a chaperone intermediate and is increased by the chaperone-binding drug geldanamycin, a potent stimulator of ErbB2 ubiquitination and degradation. These data describe a previously unrecognized pathway, amenable to pharmacologic manipulation, that mediates ErbB2 stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.