Previous studies have revealed that genetic variation in genes that regulate cell migration might be associated with susceptibility to recurrent spontaneous abortion. HULC regulates the migration of a variety of cells, and genetic polymorphisms of HULC are associated with susceptibility to a variety of diseases, but their association with susceptibility to recurrent spontaneous abortion has not been reported. This study included 610 cases of recurrent spontaneous abortion and 817 normal controls, and the polymorphisms of the four SNPs were genotyped using the TaqMan method. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to assess the associations between selected SNPs and susceptibility to recurrent spontaneous abortion. Our results showed that three SNPs were significantly associated with a reduced risk of recurrent spontaneous abortion: rs1041279 (GG vs. GC/CC: adjusted OR = 0.745, 95% CI = 0.559–0.993, P = 0.0445), rs7770772 (GC/CC vs. GG: adjusted OR = 0.757, 95% CI = 0.606–0.946, P = 0.0143), and rs17144343 (AA/GA vs GG adjusted OR = 0.526, 95% CI = 0.366–0.755, P = 0.0005). Individuals with one to four genotypes showed a reduced risk of recurrent spontaneous abortion (adjusted OR = 0.749, 95% CI = 0.598–0.939, P = 0.0123). This cumulative effect on protection increased with increases in the observed number of genotypes (adjusted OR = 0.727, 95% CI = 0.625–0.846, ptrend < 0.0001). Our study suggests that HULC might be a biomarker for risk for recurrent spontaneous abortion, but larger sample studies are needed to verify this result.
Steroid-resistant nephrotic syndrome (SRNS) is one of the major causes of end-stage kidney disease (ESKD) in children and young adults. For approximately 30% of children with SRNS results from a genetic cause. In this study, genotype-phenotype correlations in a cohort of 283 pediatric patients with SRNS or early-onset NS (nephrotic syndrome presenting within the first year of life) from 23 major pediatric nephrology centers in China were analyzed. All patients were performed with next-generation sequencing and Sanger sequencing. The overall mutation detection rate was 37.5% (106 of 283 patients). WT1 was the most frequently detected mutation, followed by NPHS1, NPHS2, and ADCK4, and these four major causative genes (WT1, NPHS1, NPHS2, and ADCK4) account for 73.6% of patients with monogenic SRNS. Thirteen of 106 individuals (12.3%) carried mutations in ADCK4 that function within the coenzyme Q10 biosynthesis pathway. In the higher frequently ADCK4-related SRNS, two mutations, c.737G>A (p.S246N) and c.748G>C (p.D250H), were the most prevalent. Our study provides not only definitive diagnosis but also facilitate available targeted treatment for SRNS, and prediction of prognosis and renal outcome. Our indications for genetic testing are patients with FSGS, initial SRNS, cases of positive family history or those with extra-renal manifestations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.