Nanopore
techniques offer a low-cost, label-free, and high-throughput
platform that could be used in single-molecule biosensing and in particular
DNA sequencing. Since 2010, graphene and other two-dimensional (2D)
materials have attracted considerable attention as membranes for producing
nanopore devices, owing to their subnanometer thickness that can in
theory provide the highest possible spatial resolution of detection.
Moreover, 2D materials can be electrically conductive, which potentially
enables alternative measurement schemes relying on the transverse
current across the membrane material itself and thereby extends the
technical capability of traditional ionic current-based nanopore devices.
In this review, we discuss key advances in experimental and computational
research into DNA sensing with nanopores built from 2D materials,
focusing on both the ionic current and transverse current measurement
schemes. Challenges associated with the development of 2D material
nanopores toward DNA sequencing are further analyzed, concentrating
on lowering the noise levels, slowing down DNA translocation, and
inhibiting DNA fluctuations inside the pores. Finally, we overview
future directions of research that may expedite the emergence of proof-of-concept
DNA sequencing with 2D material nanopores.
Protein nanopores have been widely used as single-molecule sensors for the detection and characterization of biological polymers such as DNA, RNA, and polypeptides. A variety of protein nanopores with various geometries have been exploited for this purpose, which usually exhibit distinct sensing capabilities, but the underlying molecular mechanism remains elusive. Here, we systematically characterize the molecular transport properties of four widely studied protein nanopores, α-hemolysin, MspA, CsgG, and aerolysin, by extensive molecular dynamics simulations. It is found that a sudden drop in electrostatic potentials occurs at the sole constriction in MspA and CsgG nanopores in contrast to the gradual potential change inside α-hemolysin and aerolysin pores, indicating the crucial role of pore geometry in ionic and molecular transport. We further demonstrate that these protein nanopores exhibit open-pore currents and ssDNA-induced current blockades both in the order MspA > α-hemolysin > CsgG > aerolysin, but an equivalent blockade percentage around 80%. In addition, the substitution of key amino acids at the pore constriction, especially by charged ones, provides an efficient way to modulate the pore electrostatic potential and ionic current. This work sheds new light on the search for high-performance nanopores, engineering of protein nanopores, and design of bioinspired solid-state nanopores.
We report the synthesis of cellulose membranes from balsa wood with an exceptionally high responsivity to humidity change by chemical processing and mechanical compression. By varying the ambient humidity, the produced cellulose membranes can provide a variety of predetermined deformations, such as curve, s-like deformation and curl. The high humidity responsivity is originated from a self-maintained moisture gradient induced by an asymmetrical design of membrane surfaces, aided by the hygroscopic swelling of the cellulose. The moisture-driven actuators are then demonstrated as a three-finger gripper that can grab, hold and release objects 40 times the weight of its own. The combination of natural wood and stimuli-responsive behavior open a way to designing smart structures, actuators and soft robots with environmentally friendly, recyclable and biocompatible materials.
A direct correlation between the phase state of a nanoscale water meniscus and its friction properties is established, which may benefit the design of micro- and nano-electromechanical systems operating under ambient conditions.
The mechanical properties of black phosphorus (BP) are anisotropic. Correspondingly, the properties of the nanotubes formed by bending the same BP ribbon along different directions are different as well. When bending the ribbon along the [110] direction (i.e., stair direction), or along its perpendicular direction (i.e., ps-direction), s- or ps-BPNT can be obtained. The two types of BPNTs are investigated via molecular dynamics (MD) simulations on their thermal and mechanical properties. The results indicate that, for the thermal stability of the s-BPNTs with similar diameters, s-BPNT is weaker than a-BPNTs (armchair type) but stronger than ps-BPNT, and z-BPNT (zigzag type) is the weakest one. In general, a-BPNT has larger compressive or tensile strength, while s-BPNT and ps-BPNT can bear larger deformation. Under uniaxial compression, s-BPNT has two different breaking patterns at different temperatures. The peculiar properties illustrate the wider application of BPNTs in nanodevices under large deformation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.