Coronary heart disease (CHD) is a major cause of morbidity and mortality and an important public health problem globally, but the mechanism of CHD is still complex and unclear. The purpose of the current study was to explore the mechanism underlying CHD using high-throughput technology. The study participants were patients with coronary angiography (CAG)-proven severity of coronary artery stenosis. Patients were divided into control and test group based on specific inclusion criteria, and data were collected regarding the results of routine inspection and the Gensini score (GS). We explored the mechanism underlying CHD with high-throughput integration of circular RNA (circRNA)-microRNA (miRNA) data. Through the expression of circRNA-miRNA, we discovered a total of 110 circRNAs to be differentially expressed in the two groups. Of these, 73 were upregulated and 37 downregulated in the CHD (fold ≥2.0 and P<0.05). Among 18 miRNAs, 13 were upregulated and 5 were downregulated in the CHD group (fold ≥2.0 and P<0.05). Enrichment analysis showed that circRNAs participate in a variety of disease development processes, biological processes, molecular functions, cellular components, and pathways (P<0.05). The mechanism underlying CHD may be closely related to up- or downregulated circRNA and miRNA and co-expression of circRNA-miRNA specifically involved regulate multiple pathways and multiple cellular and molecular biological processes.
There has been an increase in morbidity and mortality related to coronary heart disease (CHD) in China in recent years. Numerous clinical experiences and studies have shown that traditional Chinese medicine (TCM) plays an important role in the prevention, treatment, and prognosis of CHD. However, the mechanism of TCM in the treatment of CHD has not yet been elucidated. The circRNA-miRNA-mRNA network consists of miRNA that is competitively bound by circRNA, and miRNA regulates the transcription level of mRNA. Through literature review, we found that the circRNA-miRNA-mRNA network acts to contribute to certain effects to CHD such as myocardial hypertrophy, myocardial fibrosis, and heart failure. TCM contains constituents that act against CHD by antiatherosclerosis and apoptosis inhibition action, cardiac and cardiomyocyte protection, and these components also promote cell growth and protection of the vascular system by regulating miRNAs. Therefore, we consider that the circRNA-miRNA-mRNA network may be a new regulatory mechanism for the effective treatment of CHD by TCM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.