15A novel biosorbent derived from agricultural residue -walnut shell (WS) is reported to remove cesium from aqueous 16 solution. Nickel hexacyanoferrate (NiHCF) was incorporated into this biosorbent, serving as a high selectivity trap 17 agent for cesium. Field emission scanning electron microscope (FE-SEM) and thermogravimetric and differential 18 thermal analysis (TG-DTA) were utilized for the evaluation of the developed biosorbent. Determination of kinetic 19 parameters for adsorption was carried out using pseudo first-order, pseudo second-order kinetic models and 20 intra-particle diffusion models. Adsorption equilibrium was examined using Langmuir, Freundlich and
Heavy metals (HMs) immobilization in sewage sludge was investigated by using subcritical water technology (SCWT) in this study. The characteristics of sludge and toxicity of HMs were analyzed after SCWT process. The results showed that besides large reduction in sludge volume, SCWT had some positive effect on HMs dissolution into liquid phase, while the majority of HMs was still accumulated in solid phase. The direct toxicity and bioavailability of HMs in sludge was greatly decreased with no toxicity fractions of HMs highly increased. Pb was always at low risk level and the risk of other HMs was greatly reduced from low risk to no risk after SCWT treatment. Moreover, the leaching toxicity of HMs declined after SCWT and the best result was obtained at 280 with the metal concentrations in leachate decreased by 97.46%, 93.91%, 86.14%, 73.67%, 71.93% and 10.71% for Cu, Cd, Zn, Cr, Ni and Pb, respectively.
Hydrothermal treatment (HTT) at 200°C was applied to immobilize heavy metals (HMs) and the effect of rice husk (RH) addition was investigated based on total HMs concentration, fractionation and leaching tests. The results indicated that a synergistic effect of RH addition and HTT could be achieved on reducing the risk of HMs from medium and low risk to no risk. Metals were redistributed and transformed from weakly bounded state to stable state during the HTT process under RH addition. Notably at a RH/sludge ratio of 1/1.75 (d.w.), all the HMs showed no eco-toxicity and no leaching toxicity, with the concentrations of leachable Cr, Ni, Cu and Cd decreased by 17%, 89%, 95% and 93%, respectively. This synergistic effect of RH addition and HTT on the risk reduction of HMs implies that HTT process with RH addition could be a promising and safe disposal technology for sewage sludge treatment in practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.