Deciphering the genetic mechanisms underlying agronomic traits is of great importance for crop improvement. Most of these traits are controlled by multiple quantitative trait loci (QTLs), and identifying the underlying genes by conventional QTL fine-mapping is time-consuming and labor-intensive. Here, we devised a new method, named quantitative trait gene sequencing (QTG-seq), to accelerate QTL fine-mapping. QTGseq combines QTL partitioning to convert a quantitative trait into a near-qualitative trait, sequencing of bulked segregant pools from a large segregating population, and the use of a robust new algorithm for identifying candidate genes. Using QTG-seq, we fine-mapped a plant-height QTL in maize (Zea mays L.), qPH7, to a 300-kb genomic interval and verified that a gene encoding an NF-YC transcription factor was the functional gene. Functional analysis suggested that qPH7-encoding protein might influence plant height by interacting with a CO-like protein and an AP2 domain-containing protein. Selection footprint analysis indicated that qPH7 was subject to strong selection during maize improvement. In summary, QTG-seq provides an efficient method for QTL fine-mapping in the era of ''big data''.
Protein-protein interaction (PPI) network maintains proper function of all organisms. Simple high-throughput technologies are desperately needed to delineate the landscape of PPI networks. While recent state-of-the-art yeast two-hybrid (Y2H) systems improved screening efficiency, either individual colony isolation, library preparation arrays, gene barcoding or massive sequencing are still required. Here, we developed a recombination-based ‘library vs library’ Y2H system (RLL-Y2H), by which multi-library screening can be accomplished in a single pool without any individual treatment. This system is based on the phiC31 integrase-mediated integration between bait and prey plasmids. The integrated fragments were digested by MmeI and subjected to deep sequencing to decode the interaction matrix. We applied this system to decipher the trans-kingdom interactome between Mycobacterium tuberculosis and host cells and further identified Rv2427c interfering with the phagosome–lysosome fusion. This concept can also be applied to other systems to screen protein–RNA and protein–DNA interactions and delineate signaling landscape in cells.
The establishment of inflorescence architecture is critical for the reproduction of flowering plant species. The maize plant generates two types of inflorescences, the tassel and the ear, and their architectures have a large effect on grain yield and yield-related traits that are genetically controlled by quantitative trait loci (QTLs). Since ear and tassel architecture are deeply affected by the activity of inflorescence meristems, key QTLs and genes regulating meristematic activity have important impacts on inflorescence development and show great potential for optimizing grain yield. Isolation of yield trait-related QTLs is challenging, but these QTLs have direct application in maize breeding. Additionally, characterization and functional dissection of QTLs can provide genetic and molecular knowledge of quantitative variation in inflorescence architecture. In this review, we summarize currently identified QTLs responsible for the establishment of ear and tassel architecture and discuss the potential genetic control of four ear-related and four tassel-related traits. In recent years, several inflorescence architecture-related QTLs have been characterized at the gene level. We review the mechanisms of these characterized QTLs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.