Passive thermal management using a phase-change material (PCM) for proton exchange membrane fuel cells (PEMFCs) has been proposed and widely used in the thermal management of Li-ion batteries. A three-dimensional and nonisothermal numerical model of a PEMFC with a PCM cooling channel (PCC) is established in this study. The PCC is better than an air-cooling channel (ACC) in terms of reactant distribution and water removal. Its temperature at the interface of the gas diffusion layer and catalyst layer is lower, and the uniformity of temperature is better. The peak current and power density of the PCC are 4.60% and 5.14% higher than those of the ACC, respectively. Furthermore, the PCC does not increase parasitic power, unlike the ACC. In addition, owing to the high temperature near the outlet, the cooling effects of filling 1/3 PCM and filling 2/3 PCM near the outlet and filling of all PCM are investigated, which shows that the filling of 2/3 PCM provides a better cooling performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.