Purpose The present meta-analysis study was performed to identify the potential cardiotoxicity risks when using Vascular Endothelial Growth Factor Receptor Tyrosine kinase inhibitors (VEGFR-TKIs) as anticancer drugs in patients with solid tumors. Methods Pubmed, Embase, the Cochrane Central Register of Controlled Trials, and ClinicalTrials.gov databases were searched for the randomized controlled trials. We have included 45 randomized controlled trials (RCTs) associated with nine VEGFR-TKIs Food and Drug Administration (FDA)-approved drugs used to treat patients with solid tumors. To evaluate the trials’ risk of bias, Cochrane Risk of Bias Tool was assessed. A direct comparison was assessed by RevMan5.3 software, calculating the odds ratio (OR) and 95% confidence interval (CI). Heterogeneity was tested by the I2 statistic and Chi-square test for P value. Bayesian network meta-analysis was performed using Stata 15.0 and GeMTC 0.14.3 software, calculated OR along with corresponding 95% credible interval (CrI). The model’s convergence was evaluated by the potential scale reduced factor (PSRF). Consistency between direct and indirect comparisons was assessed by the “node-splitting” method. Results In this network meta-analysis, a total of 20,027 patients from 45 randomized controlled trials and associated with nine FDA-approved VEGFR-TKIs (axitinib, cabozantinib, lenvatinib, nintedanib, pazopanib, regorafenib, sorafenib, sunitinib, vandetanib), were enrolled. Findings indicated that lenvatinib had the most significant probability of provoking all grades cardiovascular incident and hypertension, followed by vandetanib, cabozantinib, axitinib, pazopanib, sorafenib, sunitinib, regorafenib and nintedanib. The nine agent’s severe cardiovascular and severe hypertension risk was probably similar. The ranking probability of cardiac toxicity shows that vandetanib ranked most likely to have the highest risk for cardiotoxicity among all the VEGFR-TKIs reviewed, followed by pazopanib, axitinib, sorafenib, sunitinib. In contrast, regorafenib and nintedanib did not exhibit an increased risk of cardiac damage. Conclusions The association between the nine VEGFR-TKIs with potential cardiotoxicity occurrence was reviewed. Both the regorafenib and nintedanib did not display detectable signs of cardiotoxic damage. In contrast, lenvatinib and vandetanib are ranked to have the most severe cardiotoxicity side impacts. These results may provide information for clinical practice guidelines, implementing strategies in selecting the adequate VEGFR-TKIs, and understanding the cardiovascular toxicity inflicted by the VEGFR-TKIs. PROSPERO identifier CRD 42,020,167,307.
Immunotherapy has revolutionized colon cancer treatment. Immune checkpoint inhibitors (ICIs) have shown clinical benefits for colon cancer patients, especially those with high microsatellite instability (MSI-H). In 2020, the US Food and Drug Administration (FDA)-approved ICI pembrolizumab as the first-line treatment for metastatic MSI-H colon cancer patients. Additionally, neoadjuvant immunotherapy has presented efficacy in treating early-stage colon cancer patients. Although MSI has been thought of as an effective predictive biomarker for colon cancer immunotherapy, only a small proportion of colon cancer patients were MSI-H, and certain colon cancer patients with MSI-H presented intrinsic or acquired resistance to immunotherapy. Thus, further search for predictive biomarkers to stratify patients is meaningful in colon cancer immunotherapy. Except for MSI, other biomarkers, such as PD-L1 expression level, tumor mutation burden (TMB), tumor-infiltrating lymphocytes (TILs), certain gut microbiota, ctDNA, and circulating immune cells were also proposed to be correlated with patient survival and ICI efficacy in some colon cancer clinical studies. Moreover, developing new diagnostic techniques helps identify accurate predictive biomarkers for colon cancer immunotherapy. In this review, we outline the reported predictive biomarkers in colon cancer immunotherapy and further discuss the prospects of technological changes for biomarker development in colon cancer immunotherapy.
Due to a strong retardation effect of o-nitrobenzyl ester on polymerization, it is still a great challenge to prepare amphiphilic block copolymers for polymersomes with a o-nitrobenzyl ester-based hydrophobic block. Herein, we present one such solution to prepare amphiphilic block copolymers with pure poly (o-nitrobenzyl acrylate) (PNBA) as the hydrophobic block and poly (N,N’-dimethylacrylamide) (PDMA) as the hydrophilic block using bulk reversible addition-fragmentation chain transfer (RAFT) polymerization of o-nitrobenzyl acrylate using a PDMA macro-RAFT agent. The developed amphiphilic block copolymers have a suitable hydrophobic/hydrophilic ratio and can self-assemble into photoresponsive polymersomes for co-loading hydrophobic and hydrophilic cargos into hydrophobic membranes and aqueous compartments of the polymersomes. The polymersomes demonstrate a clear photo-responsive characteristic. Exposure to light irradiation at 365 nm can trigger a photocleavage reaction of o-nitrobenzyl groups, which results in dissociation of the polymersomes with simultaneous co-release of hydrophilic and hydrophobic cargoes on demand. Therefore, these polymersomes have great potential as a smart drug delivery nanocarrier for controllable loading and releasing of hydrophilic and hydrophobic drug molecules. Moreover, taking advantage of the conditional releasing of hydrophilic and hydrophobic drugs, the drug delivery system has potential use in medical applications such as cancer therapy.
The hallmarks of renal cell carcinoma (RCC) are angiogenesis and immunogenic tumor microenvironment. Over the past decades, treatment options for metastatic RCC (mRCC) have been expanding, from the inhibition of vessel formation via antiangiogenic agents (AAs) to the stimulation of immune system by immune checkpoint inhibitors (ICIs). Since 2005, the introduction of antiangiogenic agents targeting vascular endothelial growth factor (VEGF), its receptors (VEGFRs), and mammalian target of rapamycin (mTOR) pathway have experienced moderate success in the therapeutics of mRCC, but patient outcomes remain suboptimal. Recently, the development of ICIs targeting cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and the programmed death-1/programmed death ligand 1 (PD-1/PD-L1) pathways has dramatically changed the treatment landscape of mRCC. Expressly, the combination of ipilimumab and nivolumab has been confirmed to improve clinical outcomes and approved as a standard care for intermediate- or poor-risk mRCC patients. Nevertheless, innate or adaptive drug resistance is observed within both treatment approaches, limiting overall clinical benefit. This phenomenon will underscore the urgent need for new combinational therapy strategies with different mechanisms of action, which can improve efficacy in an extended patient population without severe toxic effects. In 2019, as the results of two critical phase III trials came to light, FDA approved axitinib plus avelumab, or pembrolizumab as first-line standard management for mRCC, which cements the combination of AAs plus ICIs and advances the mRCC treatment field. This review summarizes current evidence on the interplay and synergies between AAs and immunomodulating drugs in mRCC, focusing on the theoretical background and the status of current clinical development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.