Perovskite X-ray detectors have been demonstrated to be sensitive to soft X-rays (<80 keV) for potential medical imaging applications. However, developing X-ray detectors that are stable and sensitive to hard X-rays (80 to 120 keV) for practical medical imaging is highly desired. Here, a sensitive 2D fluorophenethylammonium lead iodide ((F-PEA) 2 PbI 4) perovskite single-crystal hard-X-ray detector from low-cost solution processes is reported. Dipole interaction of organic ions promotes the ordering of benzene rings as well as the supramolecular electrostatic interaction between electron-deficient F atoms with neighbor benzene rings. Supramolecular interactions serve as a supramolecular anchor to stabilize and tune the electronic properties of single crystals. The 2D (F-PEA) 2 PbI 4 perovskite single crystal exhibits an intrinsic property with record bulk resistivity of 1.36 × 10 12 Ω cm, which brings a low device noise for hard X-ray detection. Meanwhile, the ion-migration phenomenon is effectively suppressed, even under the large applied bias of 200 V, by blocking the ion migration paths after anchoring. Consequently, the (F-PEA) 2 PbI 4 single crystal detector yields a sensitivity of 3402 µC Gy −1 air cm −2 to 120 keV p hard X-rays with lowest detectable X-ray dose rate of 23 nGy air s −1 , outperforming the dominating CsI scintillator of commercial digital radiography systems by acquiring clear X-ray images under much lower dose rate. In addition, the detector shows high operation stability under extremely high-flux X-ray irradiation. Due to the unique penetration capability of X-ray, X-ray detectors have been widely used in the fields of medical imaging, security check, non-destructive product inspection, homeland defense, etc. [1-4] Semiconductor-based X-ray detector working in direct detection mode is attractive for these applications, since it
Halide perovskites exhibit diverse properties depending on their compositions. However, integrating desired properties into one material is still challenging. Here, a facile solution-processed epitaxial growth method to grow 2D perovskite single crystal on top of 3D perovskite single crystal, which can passivate the surface defects for improved device performance is reported. Short formamidine (FA + ) ions are replaced by long organic cations, which can fully align and cover the single crystal surface to prevent the ions migration or short FA + ions volatilization. The thickness of epitaxial layer can be finely adjusted by controlling the growth time. The defect density of single crystals heterojunction is only 3.18 × 10 9 cm −3 , and the carrier mobility is 80.43 cm 2 V −1 s −1 , which is greater than that of the control 3D perovskite single crystal. This study for the first time realized large area 3D/2D perovskite single crystals heterojunction, which suppressed ions migration and exhibited advanced performance in hard X-rays detection applications. This strategy also provides a way to grow large area 2D perovskite single crystal from solution processes.
Sphere imagers featuring specific wavelength recognition and wide-angle imaging are required to meet the fast development of modern technology. However, it is still challenging to deposit high-quality photosensitive layers on sphere substrates from low-cost solution processes. Here we report spray-coated quasi-two-dimensional phenylethylammonium/formamidinium lead halide (PEA2FAn-1PbnX3n+1) perovskite hemispherical photodetectors. The crystallization speed is manipulated by perovskite compositions, and the film thickness can be controlled by spray-coating cycles and solution concentration from tens of nanometers to hundreds of micrometers with a fast velocity of 1.28 × 10−4 cm3 s−1. The lens-free hemispherical photodetectors allow light response at a wide incident angle of 180°. Simultaneously, the wavelength selective response from visible to the near-infrared range is achieved with full width at half maximums (FWHMs) of ~20 nm, comparable to single-crystal devices. Wide-angle and wavelength-selective imaging are also demonstrated, which can find potential applications in intelligent recognition and intraoperative navigated surgery.
Preface: Recently, low-cost perovskite single crystals have attracted intensive attention due to their excellent optoelectronic properties and improved stability when compared to polycrystalline films for various applications, such as solar cells (
Near-infrared (NIR) II detection at weak flux intensity is required in medical imaging and is especially urgent in light of the low quantum efficiency of NIR-II dyes. The low responsivity of traditional photodetectors in this region limits image quality. Here, we report a NIR-II photodetector with high gain based on perovskite coupled PbS colloidal quantum dots (CQDs). Tailoring the trap density of CQDs by designing surface ligands with dual functionality contributed to control over trap-induced charge-injection upon light illumination. As a result, a detector with high gain is realized, showing external quantum efficiency of 1260% at 1200 nm and achieving the lowest detectable light intensity, that is, as low as 0.67 pW cm–2 with a linear dynamic range of 200 dB. Devices maintain over 90% of responsivity after 150 days of storage. We acquired images of a butterfly wing, showing the skeleton texture with a maximum spatial resolution of 3.9 lp/mm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.