A novel method was developed to simultaneously determine the ciprofloxacin and levofloxacin levels in human urine using an ionic‐liquid‐based, dual‐molecularly imprinted polymer‐coated graphene oxide solid‐phase extraction monolithic column coupled with high‐performance liquid chromatography. The molecularly imprinted monolithic column was prepared using ciprofloxacin and levofloxacin as templates, 1‐vinyl‐3‐ethylimidazolium bromide as the functional monomer, and graphene oxide as the core material. The resulting imprinted monoliths were characterized by scanning electron microscopy and fourier transform‐infrared spectroscopy. The efficiency and capacity of the ionic‐liquid‐based imprinted monolithic column were investigated by varying the synthesis conditions (ciprofloxacin/levofloxacin ratio and template/functional monomer/cross‐linker ratio). The solid‐phase extraction process was optimized by changing the washing and eluting conditions. The results suggested that the proposed ionic‐liquid‐based molecularly imprinted solid‐phase extraction monolithic‐high‐performance liquid chromatography method could separate ciprofloxacin and levofloxacin efficiently and simultaneously from human urine. The mean recoveries of ciprofloxacin and levofloxacin ranged from 89.2 to 93.8 and 86.7 to 94.6%, respectively. The intra‐ and interday relative standard deviation ranged from 0.9 to 3.2 and 0.8 to 2.9%, respectively. Under the optimized conditions, the recoveries of ciprofloxacin and levofloxacin were more than 93.8%.
Two types of molecular-imprinted polymers-based magnetic chitosan with facile deep eutectic solvent-functional monomers (Fe O -CTS@DES-MIPs) were synthesized and applied as adsorbents in magnetic solid-phase extraction (MSPE) for the selective recognition and separation of (+)-catechin, (-)-epicatechin, and (-)-epigallocatechin gallate in black tea. The obtained Fe O -CTS@DES-MIPs were characterized by Fourier transform infrared spectroscopy and field emission scanning electron microscopy. The selective recognition ability was examined by adsorption experiments. The actual amounts of (+)-catechin, (-)-epicatechin, and (-)-epigallocatechin gallate extracted from black tea using Fe O -CTS@DES-MIPs by the MSPE method were 13.10, 6.32, and 8.76 mg/g, respectively. In addition, the magnetic Fe O -CTS@DES-MIPs showed outstanding recognition and selectivity. Therefore, it can be used to separate bioactive compounds from black tea. The new-type of DES adopted as the functional monomer in this paper provides a new perspective for the recognition and separation of bioactive compounds.
A type of molecular-imprinted polymer with magnetic molybdenum disulfide as a base and deep eutectic solvent as a functional monomer (Fe3O4@MoS2@DES-MIP) was prepared with surface molecular imprinting method. It was applied as the adsorbent for the selective recognition and separation of (+)-catechin, (−)-epicatechin, (−)-epigallocatechin, (−)-epicatechin gallate, and (−)-epigallocatechin gallate in green tea in the process of magnetic solid-phase extraction (MSPE) combined with high-performance liquid chromatography (HPLC). The structure of Fe3O4@MoS2@DES-MIP was characterized by Fourier transform infrared spectroscopy and field emission scanning electron microscopy. The adsorption properties and selective recognition ability on (−)-epigallocatechin gallate and the other four structural analogues were examined and compared. The results show that the polymer has excellent selective recognition ability for (−)-epigallocatechin gallate, and its adsorption capacity was much higher than that of structural analogues. The Fe3O4@MoS2@DES-MIP not only has the special recognition ability to template a molecule, but also can be separated by magnets with high separation efficiency and can be used in MSPE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.