Graphene's featureless optical absorption, ultrahigh carrier mobility, and variable optical absorption by an applied gate voltage enable a new breed of optical modulators with broad optical and electrical bandwidths. Here we report on an electro-optic modulator that integrates single-layer graphene in a sub-wavelength thick, reflective modulator structure. These modulators provide a large degree of design freedom, which allows tailoring of their optical properties to specific needs. Current devices feature an active aperture ~100 µm, and provide uniform modulation with flat frequency response from 1 Hz to >100 MHz. These novel, low insertion-loss graphene-based modulators offer solutions to a variety of high-speed amplitude modulation tasks that require optical amplitude modulation without phase distortions, a flat frequency response, or ultra-thin geometries, such as for controlling monolithic, high-repetition rate mode-locked lasers or active interferometers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.