The high‐voltage and low‐current output characteristics of a triboelectric nanogenerator (TENG) make itself difficult for directly powering small electronic devices. A power management circuit (PMC) is indispensable to address the impedance mismatch issue. In this paper, a TENG with a unidirectional switch (TENG‐UDS) is developed, which can provide the maximized output energy regardless of the load resistance. A passive PMC with a simple structure and high energy storage efficiency is designed based on this TENG‐UDS, which is made up of all passive electronic components, including an inductor, a diode, and a capacitor. Theoretical calculations show that the theoretical energy storage efficiency of the passive PMC can reach 75.8%. In the actual experiment of charging a capacitor, the measured energy storage efficiency can reach 48.0%. It is demonstrated that the electronic watch and high‐brightness quantum dot light‐emitting diode can be driven by using the TENG‐UDS with the passive PMC, which cannot be achieved without the PMC. The passive PMC for TENG‐UDS has the advantages of simple structure, low energy consumption, and high energy storage efficiency, which provides a promising method for the power management and practical application of TENG.
The sliding-mode triboelectric nanogenerator (S-TENG) with grated structure has important applications in energy harvest and active sensors; however its concavo-convex structure leads to large frictional resistance and abrasion. Here, we developed a S-TENG with a chemical group grated structure (S-TENG-CGG), in which the triboelectric layer's triboelectric potential has a positive-negative alternating charged structure. The triboelectric layer of the S-TENG-CGG was fabricated through a reactive ion etching process with a metal shadow mask with grated structure. In the etched region, the nylon film, originally positively charged as in friction with stainless steel, gained opposite triboelectric potential and became negatively charged because of the change of surface functional groups. The output signals of the S-TENG-CGG are alternating and the frequency is determined by both the segment numbers and the moving speed. The applications of the S-TENG-CGG in the charging capacitor and driving calculator are demonstrated. In the S-TENG-CGG, since there is no concavo-convex structure, the frictional resistance and abrasion are largely reduced, which enhances its performances in better stability and longer working time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.