The rise of cyberbullying has been of great concern for the general public. This study aims to explore public attitudes towards cyberbullying on Chinese social media. Cognition and emotion are important components of attitude, and this study innovatively used text analysis to extract the cognition and emotion of the posts. We used a web crawler to collect 53,526 posts related to cyberbullying in Chinese on Sina Weibo in a month, where emotions were detected using the software “Text Mind”, a Chinese linguistic psychological text analysis system, and the content analysis was performed using the Latent Dirichlet Allocation topic model. Sentiment analysis showed the frequency of negative emotion words was the highest in the posts; the frequency of anger, anxiety, and sadness words decreased in turn. The topic model analysis identified three common topics about cyberbullying: critiques on cyberbullying and support for its victims, rational expressions of anger and celebrity worship, and calls for further control. In summary, this study quantitatively reveals the negative attitudes of the Chinese public toward cyberbullying and conveys specific public concerns via three common topics. This will help us to better understand the demands of the Chinese public so that targeted support can be proposed to curb cyberbullying.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.