Ternary architecture is a promising strategy to further boost the performance of organic solar cells (OSCs). Reducing the bandgap of the active layer materials not only widens the absorption wavelength range and enhances the short‐circuit current (Jsc) of the OSC, but also decreases the open‐circuit voltage (Voc) of the device, leading to a trade‐off situation for the optimization of the material system. Herein, a small‐molecule donor BTID‐2F, featuring a narrower bandgap than that of PM6, is introduced into a PM6:Y6 based system. The redshift in external quantum efficiency indicates the narrower bandgap and better aggregation in the ternary blends than those of binary ones. Interestingly, lower energy disorder and energy loss are also attained for the ternary devices, leading to higher Voc. Furthermore, owing to the suppressed recombination and morphological optimization, a simultaneous enhancement in the Jsc and fill factor boosts the power conversion efficiency (PCE) of ternary OSC to 17.9% compared to 16.62% for the binary device. Likewise, replacing the acceptor with the L8‐BO molecule further improves the ternary PCE to 18.52%. This work indicates an emerging approach for fabricating high‐performance ternary OSCs with a decreased bandgap and increased Voc.
High‐performance organic semiconductor materials as the electroactive components of optoelectronic devices have attracted much attention and made them ideal candidates for solution‐processable, large‐area, and low‐cost flexible electronics. Especially, organic field‐effect transistors (OFETs) based on conjugated semiconductor materials have experienced stunning progress in device performance. To make these materials economically viable, comprehensive knowledge of charge transport mechanisms is required. The alignment of organic conjugated molecules in the active layer is vital to charge transport properties of devices. The present review highlights the recent progress of processing‐structure‐transport correlations that allow the precise and uniform alignment of organic conjugated molecules over large areas for multiple electronic applications, including OFETs, organic thermoelectric devices (OTEs), and organic phototransistors (OPTs). Different strategies for regulating crystallinity and macroscopic orientation of conjugated molecules are introduced to correlate the molecular packing, the device performance, and charge transport anisotropy in multiple organic electronic devices.
Owing to the complex and long-term treatment of foot wounds due to diabetes and the limited mobility of patients, advanced clinical surgery often uses wearable flexible devices for auxiliary treatment. Therefore, there is an urgent need for self-powered biomedical devices to reduce the extra weight. We have prepared an electrically stimulated MEMS (Micro Electromechanical System) electrode integrated with wearable OPV (Organic photovoltaic). The wearable OPV is constructed of a bio-affinity PET-ITO substrate and a hundred-nanometer organic layer. Under sunlight and near-infrared light irradiation, a voltage and current are supplied to the MEMS electrode to generate an exogenous lateral electric field directed to the center of the wound. The results of in vitro cell experiments and diabetic skin-relieving biological experiments showed the proliferation of skin fibroblasts and the expression of transforming growth factors increased, and the skin wounds of diabetic mouse healed faster. Our research provides new insights for the clinical treatment of diabetes.
Oriented organic semiconductor blends can confer desirable properties, such as enhanced charge transport properties and polarized light emission or absorption. A technique that is not only adapted to solution processing but also producing anisotropic conducting blend films is realized by epitaxial crystallization of blends on oriented polymer substrate. The epitaxial structure of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61-butyric acid methyl ester (PCBM) on oriented polyethylene (PE) substrate is affected by the boiling point of the used solvent. The P3HT spin-coated from o-dichlorobenzene with a high boiling point on PE forms a “side-on” and “face-on” molecular chain orientation with c-axis parallel to the c-axis of PE. While the orientation of the side-on and face-on is poor when P3HT is spin-coated from chloroform with a low boiling point. The addition of PCBM does not affect the epitaxial crystallization behavior of P3HT. Moreover, the anisotropic structure of PCBM is also obtained on the PE substrate. The PE substrate efficiently increases the amount of the face-on structure and the ratio of the face-on to side-on is 7 times that on the PSS:PEDOT substrate. Anisotropic structures lead to anisotropic absorption and photoluminescence properties. The anisotropic optical properties are better for the sample spin-coated from o-dichlorobenzene with the dichroic ratio of 2. The technique of employing oriented PE film to regulate the formation of oriented conducting polymer combined with the analytical method provides guidance to the fabrication and characterization of anisotropic functional film.
The crystal orientation of small molecules is one of the key parameters for developing high‐performance small molecule based organic field‐effect transistors. However, achieving a high degree of backbone alignment still remains a challenge, due to the sensitive nature of small molecules to processing conditions. Herein, the thin films of three conjugated small molecules, named as ZR1, ZR2‐C3, and Y6 are prepared by epitaxial‐crystallization on a highly oriented polyethylene (PE) substrate, resulting in the significant enhancement in charge transport properties. The maximum mobilities for aligned edge‐on molecules in the films enhance by up to 9.91 × 10−2 and 8.97 × 10−2 cm2 V−1s−1 for ZR1 and ZR2‐C3 films with conducting channel along small molecule backbones, which are 35‐ and 37‐fold that of the values evaluated in perpendicular to molecular backbones and nearly 23‐and 19‐fold beyond the values measured from unaligned films. Furthermore, the electron and hole mobilities of the small molecule Y6 with face‐on nature increase by nearly fourfold the values measured in perpendicular to the backbone direction and from unaligned films. This work demonstrates the epitaxial crystallization of thin films on oriented PE, offers a critical understanding of small molecules with different orientations and an effective approach for tuning charge transport toward high‐performance organic electronic applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.