Stereolithography (SL) can fabricate complex ceramic parts layer by layer using computer-aided design (CAD) models. The traditional SL system utilizes a vat filled with ceramic slurry with a high solid content, which for ceramics contributes to several limitations and operational difficulties, and further renders it nonrecyclable mainly due to the presence of printed residue and its high viscosity. In this study, we utilized a continuous film supply (CFS) system integrated with a tape-casting type digital light processing (DLP) printer to fabricate zirconia prototypes with a solid content of 45 volume percent (vol.%). Various printing and postprocessing parameters were studied for optimization, to achieve a relative density of 99.02% ± 0.08% with a microhardness of 12.59 ± 0.47 GPa. Slurry reusability was also demonstrated by printing with recycled slurry to produce consistent relative density values in the range of 98.86% ± 0.02% to 98.94% ± 0.03%. This method provides new opportunities for material recycling and the fabrication of dense complex ceramic products, reducing the consumption of the material.
Additive manufacturing (AM) processes, including stereolithography (SL), can fabricate complex ceramic parts layer by layer using computer-aided design (CAD) models. A ceramic slurry with high solid loading is usually used in SL to fabricate the desired shape, which is further sintered to produce the final part. The traditional SL system utilizes a tank filled with printable material, known as a vat, which for ceramic slurry contributes several limitations and operational difficulties, and further renders it non-recyclable mainly due to its high viscosity and the fragility of the green state. In this study, we utilized a continuous film supply (CFS) printer integrated with a tape casting system using in-house-designed ceramic slurry to print standard prototype specimens. Various printing parameters, including viscosity, layer thickness control, and slurry recycling efficiency, were studied. In addition, post-processing optimizations of the prototype, characterizations, and the microhardness of sintered samples were studied to determine their properties and compare them with traditional methods. The effectiveness of slurry reusability was demonstrated by printing with original and recycled slurry to produce consistent densification of final parts. Post-processing was optimized to achieve a relative sinter density of 99.02% and microhardness of 12.59 GPa. This method provides new opportunities to realize dense complex ceramic features with final properties comparable to those produced by subtractive machining and traditional SL. Furthermore, slurry recycling helps to reduce the overall cost and material consumption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.