We have detected six narrow-line Seyfert 1 (NLS1) galaxies at 37 GHz that were previously classified as radio silent and two that were classified as radio quiet. These detections reveal the presumption that NLS1 galaxies labelled radio quiet or radio silent and hosted by spiral galaxies are unable to launch jets to be incorrect. The detections are a plausible indicator of the presence of a powerful, most likely relativistic jet because this intensity of emission at 37 GHz cannot be explained by, for example, radiation from supernova remnants. Additionally, one of the detected NLS1 galaxies is a newly discovered source of gamma rays and three others are candidates for future detections.
Combined with measurements made by very-long-baseline interferometry, the observations of fast TeV gamma-ray flares probe the structure and emission mechanism of blazar jets. However, only a handful of such flares have been detected to date, and only within the last few years have these flares been observed from lower-frequency-peaked BLLac objects and flat-spectrum radio quasars. We report on a fast TeV gamma-ray flare from the blazar BLLacertae observed by the Very Energetic Radiation Imaging Telescope Array System (VERITAS). with a rise time of ∼2.3hr and a decay time of ∼36min. The peak flux above 200 GeV is (4.2 ± 0.6)×10 −6 photon m −2 s −1
We performed a long-term optical (B, V, R bands), infra-red (J and K bands) and radio band (15, 22, 37 GHz band) study on the flat spectrum radio quasar, 3C 454.3, using the data collected over a period of more than 8 years (MJD 54500-57500). The temporal variability, spectral properties and inter-waveband correlations were studied by dividing the available data into smaller segments with more regular sampling. This helped us constrain the size and the relative locations of the emission regions for different wavebands. Spectral analysis of the source revealed the interplay between the accretion
For understanding the diversity of jetted active galactic nuclei (AGN) and especially the puzzling wide range in their radio loudness, it is important to understand what role the magnetic fields play in setting the power of relativistic jets in AGN. We have performed VLBA phase-referencing observations of the radio-intermediate quasar IIIZw 2 to estimate jet magnetic flux by measuring the core-shift effect. Multi-frequency observations at 4 GHz, 8 GHz, 15 GHz, and 24 GHz were made using three nearby calibrators as reference sources. By combining the self-referencing core shift of each calibrator with the phase-referencing core shifts, we obtained an upper limit of 0.16 mas for the core shift between 4 and 24 GHz in IIIZw 2. By assuming equipartition between magnetic and particle energy densities and adopting the flux-freezing approximation, we further estimated the upper limit for both the magnetic field strength and poloidal magnetic flux threading the black hole. We find that the upper limit to the measured magnetic flux is smaller by at least a factor of five compared to the value predicted by the magnetically arrested disk (MAD) model. An alternative way to derive the jet magnetic field strength from the turnover of the synchrotron spectrum leads to an even smaller upper limit. Hence, the central engine of IIIZw 2 has not reached the MAD state, which could explain why it has failed to develop a powerful jet even though the source harbours a fast-spinning black hole. However, it generates an intermittent jet, which is possibly triggered by small-scale magnetic field fluctuations, as predicted by the magnetic flux paradigm. We propose here that combining black hole spin measurements with magnetic field measurements from the very-long-baseline-interferometry core-shift observations of AGN over a range of jet powers could provide a strong test for the dominant factor that sets the jet power relative to the available accretion power.
Detecting and modelling the reprocessed hard X-ray emission component in the accretion flow, so-called reflection spectrum is a main tool to estimate black hole spins in a wide range of astrophysical black holes regardless of their mass or distance. In this work, we studied the X-ray spectra of the Seyfert I galaxy III Zw 2 using multi-epoch XMM-Newton, NuSTAR and Suzaku observations. The X-ray spectra exhibit a soft-excess below 1 keV and a prominent excess at the location of the broad Fe Kα line at 6.4 keV. To account for these spectral features, we have fitted the spectra with multiple models including an ionized partially covering absorber and an accretion disk reflection model. To fully resolve the reflection component, we analyzed jointly the XMM-Newton and NuSTAR observations taken in 2017 and archival XMM-Newton data from 2000. Assuming the reflection scenario, the resulting model fits support a rapidly spinning black hole (a 0.98) in this radio-intermediate source. The X-ray spectra in 2000 and 2017 are remarkably similar with the only difference in the reflection fraction, possibly due to a change in the geometry of the accretion flow. However, the Suzaku observation is markedly different, and we suggest this could be an effect of a jet contribution in the X-ray band, which is supported by the elevated radio flux during this observation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.