The inverse-electron-demand Diels-Alder/pyridazine elimination tandem reaction, in which the allylic substituent on trans-cyclooctene is eliminated following reaction with tetrazines, is gaining interest as a versatile bioorthogonal process. One potential shortcoming of such currently used reactions is their propensity to proceed faster and more efficiently at lower pH, a feature caused by the nature of the tetrazines used. Here, we present aminoethyl-substituted tetrazines as the first pH-independent reagents showing invariably fast elimination kinetics at all biologically relevant pH values.
published version features the final layout of the paper including the volume, issue and page numbers.
Link to publication
General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User
Multiple
sclerosis (MS) is an autoimmune disorder manifested via
chronic inflammation, demyelination, and neurodegeneration inside
the central nervous system. The progressive phase of MS is characterized
by neurodegeneration, but unlike classical neurodegenerative diseases,
amyloid-like aggregation of self-proteins has not been documented.
There is evidence that citrullination protects an immunodominant peptide
of human myelin oligodendrocyte glycoprotein (MOG34–56) against destructive processing in Epstein-Barr virus-infected B-lymphocytes
(EBV-BLCs) in marmosets and causes exacerbation of ongoing MS-like
encephalopathies in mice. Here we collected evidence that citrullination
of MOG can also lead to amyloid-like behavior shifting the disease
pathogenesis toward neurodegeneration. We observed that an immunodominant
MOG peptide, MOG35–55, displays amyloid-like behavior
upon site-specific citrullination at positions 41, 46, and/or 52.
These amyloid aggregates are shown to be toxic to the EBV-BLCs and
to dendritic cells at concentrations favored for antigen presentation,
suggesting a role of amyloid-like aggregation in the pathogenesis
of progressive MS.
A decade ago, the drug-target residence time model has been (re-)introduced, which describes the importance of binding kinetics of ligands on their protein targets. Since then, it has been applied successfully for multiple protein targets, including GPCRs, for the development of lead compounds with slow dissociation kinetics (i.e. long target residence time) to increase in vivo efficacy or with short residence time to prevent on-target associated side effects. To date, this model has not been applied in the design and pharmacological evaluation of novel selective ligands for the cannabinoid CB receptor (CBR), a GPCR with therapeutic potential in the treatment of tissue injury and inflammatory diseases. Here, we have investigated the relationships between physicochemical properties, binding kinetics and functional activity in two different signal transduction pathways, G protein activation and β-arrestin recruitment. We synthesized 24 analogues of 3-cyclopropyl-1-(4-(6-((1,1-dioxidothiomorpholino)methyl)-5-fluoropyridin-2-yl)benzyl)imidazoleidine-2,4-dione (LEI101), our previously reported in vivo active and CBR-selective agonist, with varying basicity and lipophilicity. We identified a positive correlation between target residence time and functional potency due to an increase in lipophilicity on the alkyl substituents, which was not the case for the amine substituents. Basicity of the agonists did not show a relationship with affinity, residence time or functional activity. Our findings provide important insights about the effects of physicochemical properties of the specific substituents of this scaffold on the binding kinetics of agonists and their CBR pharmacology. This work therefore shows how CBR agonists can be designed to have optimal kinetic profiles, which could aid the lead optimization process in drug discovery for the study or treatment of inflammatory diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.