and especially C. H. Coombs have kindly made much unpublished material available to me. A number of psychologists, economists, and mathematicians have given me excellent, but sometimes unheeded, criticism. Especially helpful were C.
Bayesian statistics, a currently controversial viewpoint concerning statistical inference, is based on a definition of probability as a particular measure of the opinions of ideally consistent people. Statistical inference is modification of these opinions in the light of evidence, and Bayes' theorem specifies how such modifications should be made. The tools of Bayesian statistics include the theory of specific distributions and the principle of stable estimation, which specifies when actual prior opinions may be satisfactorily approximated by a uniform distribution. A common feature of many classical significance tests is that a sharp null hypothesis is compared with a diffuse alternative hypothesis. Often evidence which, for a Bayesian statistician, strikingly supports the null hypothesis leads to rejection of that hypothesis by standard classical procedures. The likelihood principle emphasized in Bayesian statistics implies, among other things, that the rules governing when data collection stops are irrelevant to data interpretation. It is entirely appropriate to collect data until a point has been proven or disproven, or until the data collector runs out of time, money, or patience. (71 ref.)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.