Urban vegetation growth is vital for developing sustainable and liveable cities in the contemporary era since it directly helps people’s health and well-being. Estimating vegetation cover and biomass is commonly done by calculating various vegetation indices for automated urban vegetation management and monitoring. However, most of these indices fail to capture robust estimation of vegetation cover due to their inherent focus on colour attributes with limited viewpoint and ignore seasonal changes. To solve this limitation, this article proposed a novel vegetation index called the Multiview Semantic Vegetation Index (MSVI), which is robust to color, viewpoint, and seasonal variations. Moreover, it can be applied directly to RGB images. This Multiview Semantic Vegetation Index (MSVI) is based on deep semantic segmentation and multiview field coverage and can be integrated into any vegetation management platform. This index has been tested on Google Street View (GSV) imagery of Wyndham City Council, Melbourne, Australia. The experiments and training achieved an overall pixel accuracy of 89.4% and 92.4% for FCN and U-Net, respectively. Thus, the MSVI can be a helpful instrument for analysing urban forestry and vegetation biomass since it provides an accurate and reliable objective method for assessing the plant cover at street level.
Urban greenery is an essential characteristic of the urban ecosystem, which offers various advantages, such as improved air quality, human health facilities, storm-water run-off control, carbon reduction, and an increase in property values. Therefore, identification and continuous monitoring of the vegetation (trees) is of vital importance for our urban lifestyle. This paper proposes a deep learning-based network, Siamese convolutional neural network (SCNN), combined with a modified brute-force-based line-of-bearing (LOB) algorithm that evaluates the health of Eucalyptus trees as healthy or unhealthy and identifies their geolocation in real time from Google Street View (GSV) and ground truth images. Our dataset represents Eucalyptus trees’ various details from multiple viewpoints, scales and different shapes to texture. The experiments were carried out in the Wyndham city council area in the state of Victoria, Australia. Our approach obtained an average accuracy of 93.2% in identifying healthy and unhealthy trees after training on around 4500 images and testing on 500 images. This study helps in identifying the Eucalyptus tree with health issues or dead trees in an automated way that can facilitate urban green management and assist the local council to make decisions about plantation and improvements in looking after trees. Overall, this study shows that even in a complex background, most healthy and unhealthy Eucalyptus trees can be detected by our deep learning algorithm in real time.
Automated monitoring of vegetation health in a landscape is often attributed to calculating values of various vegetation indexes over a period of time. However, such approaches suffer from an inaccurate estimation of vegetational change due to the over-reliance of index values on vegetation’s colour attributes and the availability of multi-spectral bands. One common observation is the sensitivity of colour attributes to seasonal variations and imaging devices, thus leading to false and inaccurate change detection and monitoring. In addition, these are very strong assumptions in a citizen science project. In this article, we build upon our previous work on developing a Semantic Vegetation Index (SVI) and expand it to introduce a semantic vegetation health monitoring platform to monitor vegetation health in a large landscape. However, unlike our previous work, we use RGB images of the Australian landscape for a quarterly series of images over six years (2015–2020). This Semantic Vegetation Index (SVI) is based on deep semantic segmentation to integrate it with a citizen science project (Fluker Post) for automated environmental monitoring. It has collected thousands of vegetation images shared by various visitors from around 168 different points located in Australian regions over six years. This paper first uses a deep learning-based semantic segmentation model to classify vegetation in repeated photographs. A semantic vegetation index is then calculated and plotted in a time series to reflect seasonal variations and environmental impacts. The results show variational trends of vegetation cover for each year, and the semantic segmentation model performed well in calculating vegetation cover based on semantic pixels (overall accuracy = 97.7%). This work has solved a number of problems related to changes in viewpoint, scale, zoom, and seasonal changes in order to normalise RGB image data collected from different image devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.