The cascade-exciton model has been used to observe the dependence of pion induced fission cross sections on the mass of the target. The analysis has been performed at energies 80 MeV, 100 MeV and 150 MeV for both the positive and negative pions. It has been shown that a single value of the ratio af/an can satisfactorily reproduce the experimental findings when compared with the available experimental data in the literature. The general trend of the fission cross sections with mass (fissility parameter) is seen to be low and slowly changing for the lighter nuclei, and it will steeply rise for the heavy nuclei.
Fission cross sections strongly depend on the ratio of the level density parameter in fission to neutron emission, a f /an. In this work, a cascade-exciton model implemented in the code CEM95 has been used to observe this effect for proton induced fission cross sections of tungsten, lead and bismuth. The method was employed using different level density parameter ratios for each fission cross section calculation. The calculated fission cross sections are compared with the available experimental data in the literature. It has been observed that a change of the ratio of the level density parameter, a f /an, is necessary with the incident energy of the proton, to best estimate the fission cross sections in CEM95.
Fission probabilities and fission cross sections strongly depend on the mass number of the target and energy of the projectile. In this research work, a cascade-exciton model (using CEM95 computer code) has been implemented to observe the dependence of pion-induced fission cross sections and fission probabilities on the target mass and ratio of the level density parameter in fission to neutron emission. The analysis has been performed for both the positive and negative pions as the projectile at 80, 100 and 150 MeV energies. The computed cross sections satisfactorily reproduced the experimental findings when compared with the available experimental data in the literature. We observed a smooth dependence at 150 MeV, and a sharper dependence at 80 and 100 MeV pion energy, in the fissility region above 29.44.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.