Biofilms are known to pose great risks in clinical settings, drinking water systems, and food industries as they show considerable resistance to various environmental stresses. This study investigates the antibiofilm potential of different essential oils against the test organisms Staphylococcus aureus (ATCC 25923) and Klebsiella pneumoniae (ATCC 13883). Moreover, different stages of biofilm formation were also assessed using light microscopic assays. For determining the antibiofilm activity, a total of five essential oils namely cinnamon (Cinnamomum Verum), tea tree (Melaleuca alternifolia), lavender (Lavandula), peppermint (Mentha piperita), and lemongrass (Cymbopogon citratus) were tested for their ability to inhibit the initial attachment of microbial cells as well as the eradication of mature biofilm using the microtitre plate assay. For both the test strains (S. aureus and K. pneumoniae) the concentration of 30 μl/100 μl of cinnamon oil exhibited the highest antibiofilm activity followed by the activity of peppermint oil at the same concentration. These results were further validated by employing the light microscopy assay for observing the antibiofilm potential of cinnamon and peppermint essential oils.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.