Let G = (V (G), E(G)) be a simple non-empty graph. For an integer k ≥ 1, a k-fairtotal dominating set (kf td-set) is a total dominating set S ⊆ V (G) such that |NG(u) ∩ S| = k for every u ∈ V (G)\S. The k-fair total domination number of G, denoted by γkf td(G), is the minimum cardinality of a kf td-set. A k-fair total dominating set of cardinality γkf td(G) is called a minimum k-fair total dominating set or a γkf td-set. We investigate the notion of k-fair total domination in this paper. We also characterize the k-fair total dominating sets in the join, corona, lexicographic product and Cartesian product of graphs and determine the exact values or sharpbounds of their corresponding k-fair total domination number.
Let G=(V(G),E(G)) be a simple graph. A neighborhood connected k-fair dominating set (nckfd-set) is a dominating set S subset V(G) such that |N(u) intersection S|=k for every u is an element of V(G)\S and the induced subgraph of S is connected. In this paper, we introduce and invistigate the notion of neighborhood connected k-fair domination in graphs. We also characterize such dominating sets in the join, corona, lexicographic and cartesians products of graphs and determine the exact value or sharp bounds of their corresponding neighborhood connected k-fair domination number.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.