Anaerobic digestion appears to be a favorable option to optimize the energetic exploitation and reduce the environmental impacts of bioethanol waste products. Some analytical characteristics of these waste products are available in various sources. However, these data are too incomplete and unsystematic to be compared among the bioethanol industries. Design of biogas processes based on such data has to deal with considerable unknowns regarding the technical feasibility and operating costs. Therefore, to better understand and assess the applicability of these bioethanol waste products in anaerobic digestion, the micro-and macro-element concentrations, the physicochemical parameters, and the methane potential were analyzed. In addition to the assessment of seasonal variations, the effect of alkaline and mechanical treatments was also investigated for lignocellulosic bagasse samples. Possible deficiencies of the trace elements Ni, Co, Mo, Se, and W in vinasse as a substrate for anaerobic digestion were recorded. The correlation between the gradual increase in methane yields of vinasse and filter cake along the bioethanol operating season and the dynamic changes in the substrate characteristics was shown. Moreover, the methane yield of raw bagasse increased by 50% after applying both treatments in combination.
One of the most prominent fields of environmental chemistry is the study and the removal of micro-pollutants from aqueous matrices. Analytical techniques for their identification and quantification are becoming more sensitive and comprehensive and, as a result, an increasing number of drugs have been detected in environmental samples. However, the literature shows that conventional treatments for drinking water and wastewater are not sufficient for remove these compounds. This study aims to check whether the process of hydrothermal carbonization (CHT) is effective in removing the synthetic sex hormones: ethinyl estradiol, gestodene and cyproterone acetate from aqueous samples. The system used in CHT basically consists of a pressurized reactor made of stainless steel and solutions of compounds of interest, both individual and mixed, with a concentration of 1.0 μg.L-1 and a pH range of 2.0 to 3.0. The maximum surface temperature in the reactor was about 180 °C, the internal pressure was 20 bar with 90 minutes for the reaction. Four experiments were conducted, one for each hormone and one with the three hormones together. In individual tests removal of the compounds was found to be 99.8% for ethinyl estradiol, 99.3% for gestodene and 100% for cyproterone acetate. For a mixture of the hormones treated under the same conditions, the mean values of CHT-removal of Ethinylestradiol, Gestodene and Cyproterone Acetate were 99.60%, 96.80% and 68.90%, respectively. The impact of the matrix effect may have affected the efficiency of the hormone removal process by CHT.
Nanopartículas de ferro são muito utilizadas em diversas áreas de pesquisa. O elemento químico ferro (Fe), sendo o quarto elemento mais abundante na crosta terrestre, e a substância mineral magnetita, com propriedade magnética, apresentam aplicações nas áreas industrial, ambiental, biomédica e de novas tecnologias. Este trabalho apresenta processo de síntese de nanopartículas partindo-se de sais precursores, bem como a caracterização dos produtos e as rotas para estabilizá-los. Os sais químicos precursores utilizados foram o cloreto férrico (FeCl3) e o sulfato ferroso (FeSO4) na proporção de 2:1, sob agitação por ultrassom e pH ácido. Para formação do precipitado de nanopartículas usou-se solução aquosa de hidróxido de sódio (NaOH) de pH 12. A difratometria de raio-X, mostra a presença de magnetita (Fe3O4) indicada pelos picos característicos de difração em graus 2Ө = 18° (largo), 31° (fino), 36° (bem definido), 43,4°, 45°, 53,6°, 57,7°, 63,3°. A microscopia eletrônica de transmissão mostra a morfologia dos produtos da síntese. Fatores que influenciam a estabilidade das partículas são agitação, o ajuste de pH, condições de secagem. O tamanho médio das nanopartículas de magnetitas é de aproximadamente 15 nm. Iron nanoparticles are widely used in several research areas. The chemical element iron (Fe), being the fourth most abundant element in the earth's crust, and the mineral substance magnetite, with magnetic properties, have applications in industrial, environmental, biomedical, and new technology areas. This work presents the process of synthesis of nanoparticles starting from precursor salts, as well as the characterization of the products and the routes to stabilize them. The precursor chemical salts were ferric chloride (FeCl3) and ferrous sulfate (FeSO4) in a 2:1 ratio, under ultrasound agitation and acidic pH. For the nanoparticles growth was applied aqueous solution of sodium hydroxide (NaOH) at pH 12. X-ray diffraction shows the presence of magnetite (Fe3O4) indicated by characteristic diffraction peaks in degrees 2Ө = 18° (wide), 31° (fine), 36° (well defined), 43.4°, 45°, 53.6°, 57.7°, 63.3°. Scanning electron microscopy shows the morphology of the synthesis products. Factors that influence the stability of the particles are agitation, the pH adjustment, and the conditions of drying. The average size of the magnetite nanoparticles is approximately 15 nm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.