Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) is now widely used for marker/multi-biomarker detection in medical diagnosis. We tested a new protocol for bacterial identification from blood culture broths in hospital routine by using collection tubes with separator gels on 503 included samples examined over 3 months, where 1.5 mL was injected by a syringe into BD Vacutainer tubes from BACTEC-positive bottles, before processing for bacterial protein extraction. Samples were loaded in duplicate onto the MALDI MS target, allowing a series of 12 samples to be processed in duplicate within 80 min by using Biflex III and BioTyper 2.0 software (Bruker). Including polymicrobial samples, 193 of 213 of Gram-negative bacteria (91.08%) and 284 of 319 of Gram-positive bacteria (89.02%) were correctly identified at the species level. Enterobacteriaceae constituted 35.15% of all species found, Staphylococaceae 37.96%, Streptococaceae and Enterococaceae 20.85%, Pseudomonadaceae 1.69%, and anaerobes 2.44%. In most of the polymicrobial samples, one of the species present was identified (80.9%). Seven isolates remained misidentified as Streptococcus pneumoniae, all belonging to Streptococcus mitis. Staphylococcus aureus was identified better when grown on anaero-aerobic medium, and MALDI BioTyper identification scores as low as 1.4 were pertinent, provided that four successive proposals of the same species were given. This new protocol correlates with conventional microbiology procedures by up to 90%, and by >95% for only monomicrobial samples, and provides a decreased turn-around time for identification of bacteria isolated from blood cultures, making this technology suitable also for blood cultures, with less delay and cost decreases in bacterial diagnostics, and favouring better care of patients.
Matrix-assisted laser desorption ionization-time of flight mass spectrometry has emerged as a rapid, cost-effective alternative for bacterial species identification. Identifying 60 blind-coded nonfermenting bacteria samples, this international study (using eight laboratories) achieved 98.75% interlaboratory reproducibility. Only 6 of the 480 samples were misidentified due to interchanges (4 samples) or contamination (1 sample) or not identified because of insufficient signal intensity (1 sample).Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has emerged as a fast and costeffective alternative for bacterial species identification in microbiology. On the basis of mass analysis of the protein composition of a bacterial cell, which is assumed to be characteristic for each bacterial species, it is possible to determine the species within few minutes, starting from whole cells, cell lysates, or crude bacterial extracts (2, 3, 5, 6). The proof of principle of MALDI-TOF MS for bacterial species identification was shown a decade ago (2, 5, 6); however, due to low reproducibility, it has not been widely adopted in clinical microbiology. We have recently shown that use of a larger mass range for detection (2,000 to 20,000 Da), dedicated analysis software for spectral pattern matching, and a highquality reference database of spectra generated from qualitycontrolled culture collection strains resulted in accurate species identifications, with high intralaboratory reproducibility (7). For interlaboratory reproducibility, there are only very limited data available (8, 10). We therefore evaluated the interlaboratory reproducibility for MALDI-TOF MS-based species identification in a multicenter study, applying the above-described MALDI-TOF MS improvements.(
Designed histidine-rich amphipathic cationic peptides, such as LAH4, have enhanced membrane disruption and antibiotic properties when the peptide adopts an alignment parallel to the membrane surface. Although this was previously achieved by lowering the pH, here we have designed a new generation of histidine-rich peptides that adopt a surface alignment at neutral pH. In vitro, this new generation of peptides are powerful antibiotics in terms of the concentrations required for antibiotic activity; the spectrum of target bacteria, fungi, and parasites; and the speed with which they kill. Further modifications to the peptides, including the addition of more hydrophobic residues at the N terminus, the inclusion of a helix-breaking proline residue or using D-amino acids as building blocks, modulated the biophysical properties of the peptides and led to substantial changes in toxicity to human and parasite cells but had only a minimal effect on the antibacterial and antifungal activity. Using a range of biophysical methods, in particular solid-state NMR, we show that the peptides are highly efficient at disrupting the anionic lipid component of model membranes. However, we also show that effective pore formation in such model membranes may be related to, but is not essential for, high antimicrobial activity by cationic amphipathic helical peptides. The information in this study comprises a new layer of detail in the understanding of the action of cationic helical antimicrobial peptides and shows that rational design is capable of producing potentially therapeutic membrane active peptides with properties tailored to their function.Antimicrobial peptides are being developed as a promising alternative for traditional antibiotic strategies (1) as bacteria increasingly threaten to win the antibiotic arms race. Knowledge of their mechanism of action can be used in the design of more powerful lead compounds; however, these mechanisms remain unclear, and debate continues as to the relative contributions of proposed pore formation or internal killing strategies (2). Cationic amphipathic ␣-helical peptides comprise an important group of antimicrobial peptides that have been studied quite extensively. Characteristically, these peptides comprise a high positive nominal charge segregated on one surface with a second surface formed of more hydrophobic residues. A number of models have been proposed describing their poreforming activity (3), with a recent in silico study of the action of a magainin peptide (4) embracing the accumulated experimental evidence (e.g. see Refs. 5 and 6 and references therein). The computer simulations show that, above a threshold number of peptides, one peptide molecule becomes deeply embedded in the membrane interface. Subsequently, the membrane/water interface becomes unstable, and solvent molecules from the peptide-free interface are able to interact with suitably hydrophilic groups of the embedded protein, and a contiguous pore develops (4). Importantly, the peptides in the simulation retain an align...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.