Intense few- and single-cycle pulses are powerful tools in different fields of science Today, third- and higher-order terms in the remnant spectral phase of the pulses remain a major obstacle for obtaining high-quality few- and single-cycle pulses from in-line post-compression setups. In this Letter, we show how input pulse shaping can successfully be applied to standard post-compression setups to minimize the occurrence of high-order phase components during nonlinear propagation and to directly obtain pulses with durations down to 3 fs. Furthermore, by combining this pulse shaping of the input pulse with new-generation broadband chirped mirrors and material addition for remnant third-order phase correction, pulses down to 2.2 fs duration have been measured.
Gas-filled hollow-core fiber (HCF) pulse post-compressors generating few- to single-cycle pulses are a key enabling tool for attosecond science and ultrafast spectroscopy. Achieving optimum performance in this regime can be extremely challenging due to the ultra-broad bandwidth of the pulses and the need of an adequate temporal diagnostic. These difficulties have hindered the full exploitation of HCF post-compressors, namely the generation of stable and high-quality near-Fourier-transform-limited pulses. Here we show that, independently of conditions such as the type of gas or the laser system used, there is a universal route to obtain the shortest stable output pulse down to the single-cycle regime. Numerical simulations and experimental measurements performed with the dispersion-scan technique reveal that, in quite general conditions, post-compressed pulses exhibit a residual third-order dispersion intrinsic to optimum nonlinear propagation within the fiber, in agreement with measurements independently performed in several laboratories around the world. The understanding of this effect and its adequate correction, e.g. using simple transparent optical media, enables achieving high-quality post-compressed pulses with only minor changes in existing setups. These optimized sources have impact in many fields of science and technology and should enable new and exciting applications in the few- to single-cycle pulse regime.
Abstract:We demonstrate a novel, single-shot ultrafast diagnostic, based on the dispersionscan (d-scan) technique. In this implementation, rather than scanning wedges to vary the dispersion as in standard d-scan, the pulse to be measured experiences a spatially varying amount of dispersion in a Littrow prism. The resulting beam is then imaged into a secondharmonic generation crystal and an imaging spectrometer is used to measure the twodimensional trace, which is analyzed using the d-scan retrieval algorithm. We compare the single-shot implementation with the standard d-scan for the measurement of sub-3.5-fs pulses from a hollow core fiber pulse compressor. We show that the retrieval algorithm used to extract amplitude and phase of the pulse provides comparable results, proving the validity of the new single-shot implementation down to near single-cycle durations.
We present observations of the emission of XUV continua in the 20-37 eV region by high harmonic generation (HHG) with 4-7 fs pulses focused onto a Kr gas jet. The underlying mechanism relies on coherent control of the relative delays and phases between individually generated attosecond pulse, achievable by adjusting the chirp of the driving pulses and the interaction geometry. Under adequate negative chirp and phase matching conditions, the resulting interpulse interference yields a continuum XUV spectrum, which is due to both microscopic and macroscopic (propagation) contributions. This technique opens the route for modifying the phase of individual attosecond pulses and for the coherent synthesis of XUV continua from multicycle driving laser pulses without the need of an isolated attosecond burst.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.