The findings of specific binding of 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3] in normal rat pituitary tissue and selective effects of 1,25-(OH)2D3 on gene expression in clonal pituitary tumour cells have suggested that vitamin D may regulate pituitary function. Therefore, the in vitro effect of 1,25-(OH)2D3 on normal pituitary cells was investigated. Primary anterior pituitary cell cultures prepared from female rats were maintained in experimental medium +/- 10(-8) M 1,25-(OH)2D3 for up to 24 h and then incubated with fresh experimental medium containing TRH (10(-10)-10(-8) M) or vehicle for 1 h. Pretreatment with 1,25-(OH)2D3 for 24 h led to increased TSH release at all TRH concentrations tested (P less than 0.0001), a decrease in the half-maximal stimulatory dose of TRH for TSH release from 2 X 10(-9) M to 0.4 X 10(-9) M, a 22% increase in maximal TSH release (P less than 0.01), and an 81% increase in TSH release at 10(-9) M TRH (P less than 0.001). 1 X 10(-9) M 1,25-(OH)2D3 increased TRH (10(-9) M)-induced TSH release by 20% (P less than 0.05) but 10(-7) M and 10(-6) M 25-hydroxyvitamin D3 (25-OH D3) had no effect. The effect of 1,25-(OH)2D3 on TRH (10(-9) M)-induced TSH release was evident within 8 h and was maximal by 16 h. There was no effect on basal TSH release, TSH accumulation in the medium in the preceding 24 h nor on cell-associated TSH. 1,25-(OH)2D3 pretreatment had no effect on TRH-induced PRL secretion, PRL accumulation in the medium nor on cell-associated PRL. We have shown that 1,25-(OH)2D3 acts selectively on the thyrotroph to enhance in vitro responsiveness to physiologically relevant concentrations of TRH. These findings are consistent with the reported autoradiographic localization of [3H]-1,25-(OH)2D3 in the thyrotroph and support a permissive or regulatory role of vitamin D in the normal pituitary gland.
The conversion of 25-hydroxyvitamin D3 (25 OH D3) to 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3), 24,25-dihydroxyvitamin D3 (24,25-(OH)2D3) and 1,24,25-trihydroxyvitamin D3 (1.24,25-(OH)3D3) was studied in renal tubules prepared from chicks raised on a vitamin D deficient diet with or without vitamin D supplementation. As described previously, in tubules from vitamin D deficient chicks, cyclic AMP caused an increase in the net accumulation of 1,25-(OH)2D3, the major metabolite formed under these circumstances. This stimulation was shown to be due to an increased maximum velocity of the hydroxylation reaction. There was also a significant inhibition of the net accumulation of 24,25-(OH)2D3. Cyclic GMP caused a significant inhibition of 1,25-(OH)2D3 formation and stimulation of the net accumulation of 24,25-(OH)2D3. In chicks supplemented with high doses of vitamin D, 24,25-(OH)2D3 was the major metabolite of 25 OH D3 detected and 1-hydroxylase activity was negligible. Under these circumstances, neither cyclic AMP nor cyclic GMP affected net accumulation of 24,25(OH)2D3. This suggested that the apparent effect of the nucleotides on formation of 24,25-(OH)2D3 may have been due to further metabolism of 24,25-(OH)2D3 when 1-hydroxylase activity was high. It is concluded that cyclic AMp and cyclic GMP have reciprocal effects on renal 25 OH D3-1-hydroxylase activity, and both should be considered potential intracellular regulators of 25 OH D3 metabolism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.