Ral (Ras like) leads an important proto-oncogenic signaling pathway down-stream of Ras. In this work, RalA was found to be significantly overactivated in hepatocellular carcinoma (HCC) cells and tissues as compared to non-malignant samples. Other elements of RalA pathway such as RalBP1 and RalGDS were also expressed at higher levels in malignant samples. Inhibition of RalA by gene-specific silencing caused a robust decrease in the viability and invasiveness of HCC cells. Additionally, the use of geranyl-geranyl transferase inhibitor (GGTI, an inhibitor of Ral activation) and Aurora kinase inhibitor II resulted in a significant decrease in the proliferation of HCC cells. Furthermore, RalA activation was found to be at a higher level of activation in HCC stem cells that express CD133. Transgenic mouse model for HCC (FXR-Knockout) also revealed an elevated level of RalA-GTP in the liver tumors as compared to background animals. Finally, subcutaneous mouse model for HCC confirmed effectiveness of inhibition of aurora kinase/RalA pathway in reducing the tumorigenesis of HCC cells in vivo. In conclusion, RalA overactivation is an important determinant of malignant phenotype in differentiated and stem cells of HCC and can be considered as a target for therapeutic intervention.
The Ral (Ras‐Like) signaling pathway plays an important role in the biology of cells. A plethora of effects is regulated by this signaling pathway and its prooncogenic effectors. Our team has demonstrated the overactivation of the RalA signaling pathway in a number of human malignancies including cancers of the liver, ovary, lung, brain, and malignant peripheral nerve sheath tumors. Additionally, we have shown that the activation of RalA in cancer stem cells is higher in comparison with differentiated cancer cells. In this article, we review the role of Ral signaling in health and disease with a focus on the role of this multifunctional protein in the generation of therapies for cancer. An improved understanding of this pathway can lead to development of a novel class of anticancer therapies that functions on the basis of intervention with RalA or its downstream effectors.
PurposeThe aim of this study was to identify which patient characteristics are associated with the highest likelihood of positive findings on 11C-acetate PET/computed tomography attenuation correction (CTAC) (PET/CTAC) scan when imaging for recurrent prostate cancer.MethodsFrom 2007 to 2011, 250 11C-acetate PET/CTAC scans were performed at a single institution on patients with prostate cancer recurrence after surgery, brachytherapy, or external beam radiation. Of these patients, 120 met our inclusion criteria. Logistic regression analysis was used to examine the relationship between predictability of positive findings and patients’ characteristics, such as prostate-specific antigen (PSA) level at the time of scan, PSA kinetics, Gleason score, staging, and type of treatment before scan.ResultsIn total, 68.3% of the 120 11C-acetate PET/CTAC scans were positive. The percentage of positive scans and PSA at the time of scanning and PSA velocity (PSAV) had positive correlations. The putative sensitivity and specificity were 86.6% and 65.8%, respectively, when a PSA level greater than 1.24 ng/mL was used as the threshold for scanning. The putative sensitivity and specificity were 74% and 75%, respectively, when a PSAV level greater than 1.32 ng/mL/y was used as the threshold. No significant associations were found between scan positivity and age, PSA doubling time, Gleason score, staging, or type of treatment before scanning.ConclusionsThis retrospective study suggests that threshold models of PSA greater than 1.24 ng/mL or PSAV greater than 1.32 ng/mL per year are independent predictors of positive findings in 11C-acetate PET/CTAC imaging of recurrent prostate cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.