The elemental analyses whose basis is described in the preceding two papers represent the composition of samples of Martian fines; the only undetermined major constituents thought to be present are H2O, CO2, Na2O, and possibly NOx. The samples are principally silicate particles, with some admixture of oxide and probably carbonate minerals; the fines appear to have been indurated to a variable degree by a sulfate‐rich intergranular cement. The overall elemental composition is dissimilar to any single known mineral or rock type and apparently represents a mixture of materials. Close chemical similarity among samples at each site, and between the two sites, indicates effective homogenization of the fines, presumably by planetary windstorms, and further suggests that the samples analyzed represent the fine, mobilizable materials over a large part of the planet's surface. Low trace element, alkali, and alumina contents suggest that the great preponderance of the materials in the mixture is of mafic derivation; highly differentiated, salic igneous rocks or their weathering products are insignificant components of the samples. Normative calculations, comparisons with reference libraries of analytical data, and mathematical mixture modeling have led to a qualitative mineralogical model in which the fines consist largely of iron‐rich smectites (or their degradation products), carbonates, iron oxides, probably in part maghemite, and sulfate minerals concentrated in a surface duricrust. The original smectites may have formed by interaction of mafic magma and subsurface ice, and the sulfates (and carbonates?) may have been concentrated in the surface crust by subsurface leaching, upward transport, and evaporation of intergranular moisture films. Testing and refinement of this and competing models will accompany continuing acquisition of samples and data and refinement of the analyses, particularly with respect to the critical light elements Mg, Al, and Si.
Elemental analyses of fines in the Martian regolith at two widely separated landing sites, Chryse Planitia and Utopia Planitia, produced remarkably similar results. At both sites, the uppermost regolith contains abundant Si and Fe, with significant concentrations of Mg, Al, S, Ca, and Ti. The S concentration is one to two orders of magnitude higher, and K(<0.25 percent by weight) is at least 5 times lower than the average for the earth's crust. The trace elements Sr, Y, and possibly Zr, have been detected at concentrations near or below 100 parts per million. Pebblesized fragments sampled at Chryse contain more S than the bulk fines, and are thought to be pieces of a sulfate-cemented duricrust.
Ten samples of the Martian regolith have been analyzed by the Viking lander X ray fluorescence spectrometers. Because of high‐stability electronics, inclusion of calibration targets, and special data encoding within the instruments the quality of the analyses performed on Mars is closely equivalent to that attainable with the same instruments operated in the laboratory. Determination of absolute elemental concentrations requires gain drift adjustments, subtraction of background components, and use of a mathematical response model with adjustable parameters set by prelaunch measurements on selected rock standards. Bulk fines at both Viking landing sites are quite similar in composition, implying that a chemically and mineralogically homogeneous regolith covers much of the surface of the planet. Important differences between samples include a higher sulfur content in what appear to be duricrust fragments than in fines and a lower iron content in fines taken from beneath large rocks than those taken from unprotected surface material. Further extensive reduction of these data will allow more precise and more accurate analytical numbers to be determined and thus a more comprehensive understanding of elemental trends between samples.
High power, pulsed microwaves are beamed forward of a model in a Mach 6 flow using an on-board, Ku-band horn. A thin “precursor” plasma is generated just ahead of the bow shock in the low density free stream. Temporal and spatial analysis of the microwave E-field and plasma conductivity in the supersonic flow field indicate that the plasma reflects a large proportion of the microwave power in an individual pulse as soon as the plasma frequency exceeds the wave frequency. Possible methods for more efficient deposition of power in the free stream are discussed which could lead to increased interaction with the shock.
A liquid filled microstructured optical fiber (MOF) is used to detect x-rays. Numerical analysis and experimental observation leads to geometric fiber optics theory for MOF photon transmission. A model using this theory relates the quantity and energy of absorbed x-ray photons to transmitted MOF generated photons. Experimental measurements of MOF photon quantities compared with calculated values show good qualitative agreement. The difference between the calculated and measured values is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.