Recurrent projections comprise a universal feature of cerebral organization. Here, we show that the corticofugal projections from the striate cortex (VI) to the lateral geniculate nucleus (LGN) robustly and multiplicatively enhance the responses of parvocellular neurons, stimulated by gratings restricted to the classical receptive field and modulated in luminance, by over two-fold in a contrast-independent manner at all but the lowest contrasts. In the equiluminant plane, wherein stimuli are modulated in chromaticity with luminance held constant, such enhancement is strongly contrast dependent. These projections also robustly enhance the responses of magnocellular neurons but contrast independently only at high contrasts. Thus, these results have broad functional significance at both network and neuronal levels by providing the experimental basis and quantitative constraints for a wide range of models on recurrent projections and the control of contrast gain.
Units in areas of the midbrain rich in neurons containing serotonin respond to parenteral injections of d-lysergic acid diethylamide by a reversible cessation of spontaneous activity. The dose required is at or below threshold for gross behavioral effects. An inhibition of neurons containing serotonin after administration of d-lysergic acid diethylamide could account for the decreased metabolism of serotonin produced by this drug.
A direct pathway from the retina to the dorsal raphe nucleus (DRN) has been demonstrated in both albino rats and Mongolian gerbils. Following intraocular injection of cholera toxin subunit B (CTB), a diffuse stream of CTB‐positive, fine‐caliber optic axons emerged from the optic tract at the level of the pretectum/anterior mesencephalon. In gerbils, CTB‐positive axons descended ventromedially into the periaqueductal gray, moving caudally and arborizing extensively throughout the DRN. In rats, the retinal‐DRN projection comprised fewer, but larger caliber, axons, which arborized in a relatively restricted region of the lateral and ventral DRN. Following injection of CTB into the lateral DRN, retrogradely labeled ganglion cells (GCs) were observed in whole‐mount retinas of both species. In gerbils, CTB‐positive GCs were distributed over the entire retina, and a nearest‐neighbor analysis of CTB‐positive GCs showed significant regularity (nonrandomness) in their distribution. The overall distribution of gerbil GC soma diameters ranged from 8 to 22 μm and was skewed slightly towards the larger soma diameters. Based on an adaptive mixtures model statistical analysis, two Gaussian distributions appeared to comprise the total GC distribution, with mean soma diameters of 13 (SEM ±1.7) μm, and 17 (SEM ±1.5) μm, respectively. In rats, many fewer CTB‐positive GCs were labeled following CTB injections into the lateral DRN, and nearly all occurred in the inferior retina. The total distribution of rat GC soma diameters was similar to that in gerbils and also was skewed towards the larger soma diameters. Major differences observed in the extent and configuration of the retinal‐DRN pathway may be related to the diurnal/crepuscular vs. nocturnal habits of these two species. J. Comp. Neurol. 414:469–484, 1999. © 1999 Wiley‐Liss, Inc.
Subfield analysis of the receptive fields (RFs) of parafoveal V4 complex cells demonstrates directly that most RFs are tiled by overlapping second-order excitatory inputs that for any given V4 cell are predominantly selective to the same preferred values of spatial frequency and orientation. These results extend hierarchical principles of RF organization in the spatial, orientation and spatial frequency domains, first recognized in V1, to an intermediate extrastriate cortex. Spatial interaction studies across subfields demonstrate that the responses of V4 neurons to paired stimuli may either decrease or increase as a function of inter-stimulus distance across the width axis. These intra-RF suppressions and facilitations vary independently in magnitude and spatial extent from cell to cell. These results taken together with the relatively large RF sizes of V4 neurons - as compared with RF sizes of their afferent inputs - lead us to hypothesize a novel property, namely that classes of stimulus configurations that enhance areal summation while reducing suppressive interactions between excitatory inputs will evoke especially robust responses. We tested, and found support for, this hypothesis by presenting stimuli consisting of optimally tuned sine-wave gratings visible only within an annular region and found that such stimuli vigorously activate V4 neurons at firing rates far higher than those evoked by comparable stimuli to either the full-field or central core. On the basis of these results we propose a framework for a new class of neural network models for the spatial RF organizations of prototypic V4 neurons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.