The study of the iron-based superconductor FeSe has blossomed with the availability of highquality single crystals, obtained through flux/vapor-transport growth techniques below the structural transformation temperature of its tetragonal phase, T ≈ 450• C. Here, we report on the variation of sample morphology and properties due to small modifications in the growth conditions. A considerable variation of the superconducting transition temperature Tc, from 8.8 K to 3 K, which cannot be correlated with the sample composition, is observed. Instead, we point out a clear correlation between Tc and disorder, as measured by the residual resistivity ratio. Notably, the tetragonal-to-orthorhombic structural transition is also found to be quite strongly disorder dependent (Ts ≈ 72 − 90 K), and linearly correlated with Tc.
Large high-quality single crystals of hole-doped iron-based superconductor (Ba1-xKx)Fe2As2 were grown over a broad composition range 0.22 <= x <= 1 by inverted temperature gradient method. We found that high soaking temperature, fast cooling rate, and an adjusted temperature window of the growth are necessary to obtain single crystals of heavily K-doped crystals (0.65 <= x <= 0.92) with narrow compositional distributions as revealed by sharp superconducting transitions in magnetization measurements and close to 100% superconducting volume fraction. The crystals were extensively characterized by x-ray and compositional analysis, revealing monotonic evolution of the c-axis crystal lattice parameter with K substitution. Quantitative measurements of the temperature-dependent in-plane resistivity rho(T) found doping-independent, constant within error bars, resistivity at room temperature, rho(300 K), in sharp contrast with the significant doping dependence in electron and isovalent substituted BaFe2As2 based compositions. The shape of the temperature-dependent resistivity, rho(T), shows systematic dopingevolution, being close to T-2 in overdoped and revealing significant contribution of the T-linear component at optimum doping. The slope of the upper critical field, d H-c2/dT, scales linearly with T-c for both H parallel to c, H-c2,(c), and H parallel to ab, H-c2,H-ab. The anisotropy of the upper critical field. equivalent to Hc(2,ab)/H-c2,H-c determined near zero-field T-c increases from similar to 2 to 4-5 with increasing K doping level from optimal x similar to 0.4 to strongly overdoped x = 1. Large high-quality single crystals of hole-doped iron-based superconductor (Ba 1−x K x )Fe 2 As 2 were grown over a broad composition range 0.22 x 1 by inverted temperature gradient method. We found that high soaking temperature, fast cooling rate, and an adjusted temperature window of the growth are necessary to obtain single crystals of heavily K-doped crystals (0.65 x 0.92) with narrow compositional distributions as revealed by sharp superconducting transitions in magnetization measurements and close to 100% superconducting volume fraction. The crystals were extensively characterized by x-ray and compositional analysis, revealing monotonic evolution of the c-axis crystal lattice parameter with K substitution. Quantitative measurements of the temperature-dependent in-plane resistivity ρ(T ) found doping-independent, constant within error bars, resistivity at room temperature, ρ(300 K), in sharp contrast with the significant doping dependence in electron and isovalent substituted BaFe 2 As 2 based compositions. The shape of the temperature-dependent resistivity, ρ(T ), shows systematic doping-evolution, being close to T 2 in overdoped and revealing significant contribution of the T -linear component at optimum doping. The slope of the upper critical field, dH c2 /dT , scales linearly with T c for both H c, H c2,c , and H ab, H c2,ab . The anisotropy of the upper critical field γ ≡ H c2,ab /H c2,c determined near z...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.