In this study, dithiothreitol was replaced by tributyl phosphine as the reducing agent in both the sample solution for the first-dimensional isoelectric focusing and during the immobilised pH gradient (IPG) equilibration procedure. Tributyl phosphine improves protein solubility during isoelectric focusing, which results in shorter run times and increased resolution. Tributyl phosphine is nonionic and thus does not migrate in the IPG, therefore maintaining reducing conditions during the course of the first-dimensional separation. The increased solubility provided by the maintenance of reducing conditions gives improved focusing and decreased horizontal streaking on the subsequent second-dimension gel. The use of tributyl phosphine in the equilibration step allows the procedure to be simplified, incorporating reduction and alkylation in a single step. This is possible because, in direct contrast to dithiothreitol (DTT), tributyl phosphine does not contain a free thiol and therefore does not react with thiol-specific alkylating reagents.
Understanding the photodegradation of complex protein systems represents a significant goal in protein science. The photo-oxidation and resultant photoyellowing of wool in sunlight is a severe impediment to its marketability. However, although some photomodifications have been found in irradiated model amino acid systems, direct identification of the chromophoric photoproducts responsible for photoyellowing in irradiated wool itself has proved elusive. We here describe the direct characterisation and location of yellow chromophores and related photomodifications within the proteins of photoyellowed wool fabric, utilising a quasi-proteomic approach. In total, eight distinct photoproducts were characterised. Of these, five were derived from tryptophan; namely hydroxytryptophan, N-formylkynurenine, kynurenine, residues consistent with the dehydration of kynurenine, and hydroxykynurenine, while three were derived from tyrosine; namely dihydroxyphenylalanine, dityrosine, and a cross-linked residue consistent with a hydroxylated dityrosine residue. Fourteen modified peptide sequences were identified and the positions of modification for thirteen of these were located within the primary structure of known wool proteins. The nature of the photoproducts characterised offer valuable insight into the reaction pathways followed in the UV-induced photoyellowing of wool proteins.
Nanomechanical properties of biological fibers are governed by the morphological features and chemically heterogeneous constituent subunits. However, very little experimental data exist for nanoscale correlation between heterogeneous subunits and their mechanical properties. We have used keratin-rich wool fibers as a model of composite biological fibers; a wool fiber is a simple two component cylindrical system consisting of a core cellular component surrounded by an outer cell layer and their ultrastructure and chemical composition are well-characterized. The core is 16-40 micrometer in diameter and rich in axially aligned keratin microfibrils. Outer cells have multiple laminar layers, 60-600 nm thick and distinctly rich in disulfide bonds. We used an atomic force microscope (AFM) to examine the nanomechanical properties of various structural components using complementary techniques of force-volume imaging and nano-indentation. AFM images of transverse sections of fibers were obtained in ambient environment, and the mechanical properties of several identified regions were examined. The outer cell layer showed a significantly higher mechanical stiffness than the internal cellular core region. Chemical reduction of disulfide bonds eliminated such dichotomy of mechanical strengths, indicating that the higher rigidity of the outer layer is attributed primarily to the presence of extensive disulfide bonding in the exo-cuticle. This is the first detailed correlative study of nano-indentation and regional elasticity measurements in composite biological systems, including mammalian biological fibers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.