Wild and managed bees are well documented as effective pollinators of global crops of economic importance. However, the contributions by pollinators other than bees have been little explored despite their potential to contribute to crop production and stability in the face of environmental change. Non-bee pollinators include flies, beetles, moths, butterflies, wasps, ants, birds, and bats, among others. Here we focus on non-bee insects and synthesize 39 field studies from five continents that directly measured the crop pollination services provided by non-bees, honey bees, and other bees to compare the relative contributions of these taxa. Non-bees performed 25-50% of the total number of flower visits. Although non-bees were less effective pollinators than bees per flower visit, they made more visits; thus these two factors compensated for each other, resulting in pollination services rendered by non-bees that were similar to those provided by bees. In the subset of studies that measured fruit set, fruit set increased with non-bee insect visits independently of bee visitation rates, indicating that non-bee insects provide a unique benefit that is not provided by bees. We also show that non-bee insects are not as reliant as bees on the presence of remnant natural or seminatural habitat in the surrounding landscape. These results strongly suggest that non-bee insect pollinators play a significant role in global crop production and respond differently than bees to landscape structure, probably making their crop pollination services more robust to changes in land use. Non-bee insects provide a valuable service and provide potential insurance against bee population declines.unmanaged pollinator | insect pollinator | fly | bee | beetle
Three haplotypes of the recently discovered bacterium species "Candidatus Liberibacter solanacearum" are described and related to geographic ranges. The first two are associated with Zebra Chip/Psyllid Yellows of potatoes and other solanaceous plants, vectored by the tomato/potato psyllid Bactericera cockerelli in North and Central America and New Zealand. The third is associated with diseased carrots in Finland and vectored by the carrot psyllid Trioza apicalis. The haplotypes are described by SNPs on the 16s rRNA, 16s/23s ISR and 50s rplJ and rplL ribosomal protein genes. These SNPs are inherited as a package across the three genes. Haplotype "a" has been found primarily from Honduras and Guatemala through western Mexico to Arizona and California, and in New Zealand. Haplotype "b" is currently known from eastern Mexico and northwards through Texas to south central Washington. These haplotypes show some range overlap in Texas, Kansas and Nebraska. The haplotypes are not yet known to elicit biological differences in the plant or insect hosts. These apparently stable haplotypes suggest separate bacterial populations of long standing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.