Understanding deformation of mineral phases in the lowermost mantle is important for interpreting seismic anisotropy in Earth's interior. Recently, there has been considerable controversy regarding deformation-induced slip in MgSiO(3) post-perovskite. Here, we observe that (001) lattice planes are oriented at high angles to the compression direction immediately after transformation and before deformation. Upon compression from 148 gigapascals (GPa) to 185 GPa, this preferred orientation more than doubles in strength, implying slip on (001) lattice planes. This contrasts with a previous experiment that recorded preferred orientation likely generated during the phase transformation rather than deformation. If we use our results to model deformation and anisotropy development in the D'' region of the lower mantle, shear-wave splitting (characterized by fast horizontally polarized shear waves) is consistent with seismic observations.
[1] Anisotropy of elastic properties in clay-rich sedimentary rocks has been of long-standing interest. These rocks are cap rocks of oil and gas reservoirs, as well as seals for carbon sequestration. Elasticity of shales has been approached by direct velocity measurements and by models based on microstructures. Here we are revisiting the classical Kimmeridge shale studied by Hornby (1998) by first quantifying microstructural features such as phase volume fractions, grain shapes and grain orientations, and pore distributions with advanced analytical methods and then using this information in different models to explain bulk elastic properties. It is shown that by application of a self-consistent algorithm based on Eshelby's (1957) model of inclusions in a homogeneous medium, it is possible to explain most experimental elastic constants, though some discrepancies remain which may be due to the interpretation of experimental data. Using a differential effective medium approach, an almost perfect agreement with experimental stiffness coefficients can be obtained, though the physical basis of this method may be questionable. The influence of single crystal elastic properties, grain shapes, preferred orientation, and volume and shapes of pores on elastic properties of shale is explored.
Uplifts in the Campi Flegrei caldera reach values unsurpassed anywhere in the world (~2 meters). Despite the marked deformation, the release of strain appears delayed. The rock physics analysis of well cores highlights the presence of two horizons, above and below the seismogenic area, underlying a coupled process. The basement is a calc-silicate rock housing hydrothermal decarbonation reactions, which provide lime-rich fluids. The caprock above the seismogenic area has a pozzolanic composition and a fibril-rich matrix that results from lime-pozzolanic reactions. These findings provide evidence for a natural process reflecting that characterizing the cementitious pastes in modern and Roman concrete. The formation of fibrous minerals by intertwining filaments confers shear and tensile strength to the caprock, contributing to its ductility and increased resistance to fracture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.