Carcinogenesis is accompanied by widespread DNA methylation changes within the cell. These changes are characterized by a globally hypomethylated genome with focal hypermethylation of numerous 5’-cytosine-phosphate-guanine-3’ (CpG) islands, often spanning gene promoters and first exons. Many of these epigenetic changes occur early in tumorigenesis and are highly pervasive across a tumor type. This allows DNA methylation cancer biomarkers to be suitable for early detection and also to have utility across a range of areas relevant to cancer detection and treatment. Such tests are also simple in construction, as only one or a few loci need to be targeted for good test coverage. These properties make cancer-associated DNA methylation changes very attractive for development of cancer biomarker tests with substantive clinical utility. Across the patient journey from initial detection, to treatment and then monitoring, there are several points where DNA methylation assays can inform clinical practice. Assays on surgically removed tumor tissue are useful to determine indicators of treatment resistance, prognostication of outcome, or to molecularly characterize, classify, and determine the tissue of origin of a tumor. Cancer-associated DNA methylation changes can also be detected with accuracy in the cell-free DNA present in blood, stool, urine, and other biosamples. Such tests hold great promise for the development of simple, economical, and highly specific cancer detection tests suitable for population-wide screening, with several successfully translated examples already. The ability of circulating tumor DNA liquid biopsy assays to monitor cancer in situ also allows for the ability to monitor response to therapy, to detect minimal residual disease and as an early biomarker for cancer recurrence. This review will summarize existing DNA methylation cancer biomarkers used in clinical practice across the application domains above, discuss what makes a suitable DNA methylation cancer biomarker, and identify barriers to translation. We discuss technical factors such as the analytical performance and product-market fit, factors that contribute to successful downstream investment, including geography, and how this impacts intellectual property, regulatory hurdles, and the future of the marketplace and healthcare system.
Epigenetic alterations in the cancer methylome are common in breast cancer and provide novel options for tumour stratification. Here, we perform whole-genome methylation capture sequencing on small amounts of DNA isolated from formalin-fixed, paraffin-embedded tissue from triple-negative breast cancer (TNBC) and matched normal samples. We identify differentially methylated regions (DMRs) enriched with promoters associated with transcription factor binding sites and DNA hypersensitive sites. Importantly, we stratify TNBCs into three distinct methylation clusters associated with better or worse prognosis and identify 17 DMRs that show a strong association with overall survival, including DMRs located in the Wilms tumour 1 (WT1) gene, bi-directional-promoter and antisense WT1-AS. Our data reveal that coordinated hypermethylation can occur in oestrogen receptor-negative disease, and that characterizing the epigenetic framework provides a potential signature to stratify TNBCs. Together, our findings demonstrate the feasibility of profiling the cancer methylome with limited archival tissue to identify regulatory regions associated with cancer.
Expression of oestrogen receptor (ESR1) determines whether a breast cancer patient receives endocrine therapy, but does not guarantee patient response. The molecular factors that define endocrine response in ESR1-positive breast cancer patients remain poorly understood. Here we characterize the DNA methylome of endocrine sensitivity and demonstrate the potential impact of differential DNA methylation on endocrine response in breast cancer. We show that DNA hypermethylation occurs predominantly at oestrogen-responsive enhancers and is associated with reduced ESR1 binding and decreased gene expression of key regulators of ESR1 activity, thus providing a novel mechanism by which endocrine response is abated in ESR1-positive breast cancers. Conversely, we delineate that ESR1-responsive enhancer hypomethylation is critical in transition from normal mammary epithelial cells to endocrine-responsive ESR1-positive cancer. Cumulatively, these novel insights highlight the potential of ESR1-responsive enhancer methylation to both predict ESR1-positive disease and stratify ESR1-positive breast cancer patients as responders to endocrine therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.