Gastric tissue biopsy and gene expression analysis are important tools for disease diagnosis and study of the physiology of the equine stomach. However, RNA extraction from gastric biopsy samples is a complex procedure
because the samples contain low quantities of RNA and are contaminated with mucous protein and bacterial flora. The objectives of these studies were to compare the performance of RNA extraction methods and to investigate
the sensitivity of commercial qPCR master mixes for gene expression analysis of gastric biopsy samples. Three commercial RNA extraction methods (TRIzol™, GENEzol™ and MiniPrep™) and four
qPCR master mixes with SYBR® green (qPCRBIO, KAPA, QuantiNova, and PerfeCTa) were compared. RNA qualification and quantitation were compared. Real-time PCR was used to compare qPCR master mixes. The results
revealed that TRIzol and GENEzol obtained significantly higher yield of RNA (P<0.01) but that TRIzol had the highest contamination of protein and DNA (P<0.05). Conversely, MiniPrep resulting in a significantly
higher purification of RNA (P<0.05) but provided the lowest yield of RNA (P<0.01). For PCR master mixes, KAPA was significantly (P<0.05) more sensitive than other qPCR kits for all amounts of DNA template,
particularly at the lowest amount of cDNA. In conclusion, GENEzol is the best method to obtain a high RNA yield and purification and it is more cost-effective than the others as well. Regarding the qPCR master mixes,
KAPA SYBR qPCR Master Mix (2x) Universal is superior to the other tested master mixes for studying gene expression in equine gastric biopsies.
The Wingless and Int-1 (WNT) and bone morphogenic protein/growth differentiation factor
(BMP/GDF) signalling pathways contribute significantly to the development of the
musculoskeletal system. The mechanism by which they contribute is as follows: BMP/GDF
signalling usually promotes tendon differentiation, whereas WNT signalling inhibits it. We
hypothesised that inhibiting WNT and subsequently stimulating BMP signalling may enhance
the tenogenic differentiation of stem cells. The objective of this study was to determine
whether a combination of WNT inhibitor (KY02111) and BMP12/GDF7 protein could enhance the
differentiation of bone marrow-derived equine mesenchymal stromal cells (BM-eMSCs) into
tenocytes. Cells were cultured in five treatments: control, BMP12, and three different
combinations of BMP12 and KY02111. The results indicated that a 1-day treatment with
KY02111 followed by a 13-day treatment with BMP12 resulted in the highest tenogenic
differentiation score in this experiment. The effect of KY02111 is dependent on the
incubation time, with 1 day being better than 3 or 5 days. This combination increased
tenogenic gene marker expression, including SCX, TNMD, DCN, and TNC, as well as COL1
protein expression. In conclusion, we propose that a combination of BMP12 and KY02111 can
enhance the in vitro tenogenic differentiation of BM-eMSCs more than BMP12 alone. The
findings of this study might be useful for improving tendon differentiation protocols for
stem cell transplantation and application to tendon regeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.