We previously demonstrated that a high-fat diet (HFD) consumption can cause not only peripheral insulin resistance, but also neuronal insulin resistance. Moreover, the consumption of an HFD has been shown to cause mitochondrial dysfunction in both the skeletal muscle and liver. Rosiglitazone, a peroxizome proliferator-activated receptor-γ ligand, is a drug used to treat type 2 diabetes mellitus. Recent studies suggested that rosiglitazone can improve learning and memory in both human and animal models. However, the effects of rosiglitazone on neuronal insulin resistance and brain mitochondria after the HFD consumption have not yet been investigated. Therefore, we tested the hypothesis that rosiglitazone improves neuronal insulin resistance caused by a HFD via attenuating the dysfunction of neuronal insulin receptors and brain mitochondria. Rosiglitazone (5 mg/kg · d) was given for 14 d to rats that were fed with either a HFD or normal diet for 12 wk. After the 14(th) week, all animals were euthanized, and their brains were removed and examined for insulin-induced long-term depression, neuronal insulin signaling, and brain mitochondrial function. We found that rosiglitazone significantly improved peripheral insulin resistance and insulin-induced long-term depression and increased neuronal Akt/PKB-ser phosphorylation in response to insulin. Furthermore, rosiglitazone prevented brain mitochondrial conformational changes and attenuated brain mitochondrial swelling, brain mitochondrial membrane potential changes, and brain mitochondrial ROS production. Our data suggest that neuronal insulin resistance and the impairment of brain mitochondria caused by a 12-wk HFD consumption can be reversed by rosiglitazone.
BackgroundChronic high-fat diet (HFD) consumption caused not only obese-insulin resistance, but also cognitive decline and microglial hyperactivity. Modified gut microbiota by prebiotics and probiotics improved obese-insulin resistance. However, the effects of prebiotics, probiotics, and synbiotics on cognition and microglial activity in an obese-insulin resistant condition have not yet been investigated. We aimed to evaluate the effect of prebiotic (Xyloolidosaccharide), probiotic (Lactobacillus paracasei HII01), or synbiotics in male obese-insulin resistant rats induced by a HFD.MethodsMale Wistar rats were fed with either a normal diet or a HFD for 12 weeks. At week 13, the rats in each dietary group were randomly divided into four subgroups including vehicle group, prebiotics group, probiotics group, and synbiotics group. Rats received their assigned intervention for an additional 12 weeks. At the end of experimental protocol, the cognitive functioning of each rat was investigated; blood and brain samples were collected to determine metabolic parameters and investigate brain pathology.ResultsWe found that chronic HFD consumption leads to gut and systemic inflammation and impaired peripheral insulin sensitivity, which were improved by all treatments. Prebiotics, probiotics, or synbiotics also improved hippocampal plasticity and attenuated brain mitochondrial dysfunction in HFD-fed rats. Interestingly, hippocampal oxidative stress and apoptosis were significantly decreased in HFD-fed rats with all therapies, which also decreased microglial activation, leading to restored cognitive function.ConclusionsThese findings suggest that consumption of prebiotics, probiotics, and synbiotics restored cognition in obese-insulin resistant subjects through gut-brain axis, leading to improved hippocampal plasticity, brain mitochondrial function, and decreased microglial activation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.