This paper presents the results of a field study undertaken all over the Punjab, Pakistan, to evaluate the socio-economic and climatic impact of photovoltaic-operated high-efficiency irrigation systems (HEIS), i.e., drip and sprinkler irrigation systems. Nearly half of the rural population relies on agriculture for a living, and the recent energy crisis has had a negative impact on rural communities. Farmers’ reliance on fossil fuels for the operation of irrigation systems has increased exponentially, resulting in the high costs of agricultural production. Primary data regarding on-farm agriculture and irrigation practices used in this study were collected through an intensive on-farm survey, while secondary data were taken from published reports and statistics. The results of the current investigation show that the installation of PV systems has resulted in the increased adoption of high-efficiency irrigation systems, a reduction in the high operational costs incurred on account of old diesel-powered pumping systems (with an annual saving of 6.6 million liters of diesel), a 100% increase in farmer’s income, a reduction of 17,622 tons of CO2 emissions per annum, and 41% savings in water. The unit cost of PV-powered HEIS was found to be 0.1219 USD/kWh, which was 4% and 66% less than subsidized electricity cost and diesel cost, respectively.
The world is moving towards renewable energy sources rapidly and, at present, fossil fuels are reducing day by day. In this scenario, biofuels have become an attractive alternative to conventional diesel fuels. In the present work, the vaporization of Thumba biodiesel is numerically modeled using the finite volume-based approach in ANSYS Fluent and the results are compared with diesel fuel. Evaporation of fuels is governed by the conservation equations of energy, momentum, and mass. Owing to high temperature and pressure conditions, turbulence is present in the engine cylinder. To account for the turbulence effects, the Reynolds-averaged Navier–Stokes (RANS) turbulence model is used. Heat transfer to droplet and mass lost by the droplets is governed by the discrete phase model equations. The obtained results include the droplet lifetime, increase in temperature of a droplet, and velocity profiles. It is observed that the size and temperature of fuel droplets and ambient temperature have a significant effect on the evaporation time of fuel droplets in the engine cylinder. By reducing the droplet size, the complete evaporation of fuels can be achieved. Droplets having a high temperature have a short evaporation time and high evaporation rate. It is noted that, at a higher temperature, biodiesel evaporates more quickly than diesel fuel, thus producing complete combustion and hence giving maximum power output.
The purpose of this study is to investigate the potential of airborne particulate matter (PM10 and PM2.5) and its impact on the performance of the photovoltaic (PV) system installed in the Sargodha region, being affected by the crushing activities in the hills. More than 100 stone crushers are operating in this region. Four stations within this region are selected for taking samples during the summer and winter seasons. Glass–fiber papers are used as a collection medium for particulate matter (PM) in a high-volume sampler. The concentration of PM is found above the permissible limit at all selected sites. The chemical composition, concentration, and the formation of particulate matter (PM10 and PM2.5) layers on the surface of the photovoltaic module varies significantly depending on the site’s location and time. The accumulation of PM layers on the PV module surface is one of the operating environmental factors that cause significant reduction in PV system performance. Consequently, it leads to power loss, reduction of service life, and increase in module temperature. For the PV system’s performance analysis, two PV systems are installed at the site, having higher PM concentration. One system is cleaned regularly, while the other remains dusty. The data of both PV systems are measured and compared for 4 months (2 months for the summer season and 2 months for the winter season). It is found that when the level of suspended particulate matter (PM10 and PM2.5) increases, the energy generation of the dusty PV system (compared to the cleaned one) is reduced by 7.48% in May, 7.342% in June, 10.68% in December, and 8.03% in January. Based on the obtained results, it is recommended that the negative impact of PM on the performance of the PV system should be considered carefully during the decision-making process of setting solar energy generation targets in the regions with a high level of particulate matter.
Power augmentation in a small-scale horizontal axis wind turbine, with its rotor encased in a flanged diffuser is explored. The power output of the wind turbine varies with changes in the diffuser design and the resulting back pressure. Reduction in this back pressure also results in early flow separation at the diffuser surface, which hinders turbine performance. The main aim of this study is to numerically investigate the local configuration of the wind turbine location inside the diffuser by varying diffuser angles and wind speeds. Therefore, shroud and flange were modeled and analyzed using the computational fluid dynamic (CFD) analyses and experiments were performed at two wind speeds 6 m/s and 8 m/s with and without the diffuser for model validation. The divergence angle of 4° was found to have no flow separation, thus maximizing flow rate. The proposed design shows wind speed improvement of up to 1.68 times compared to the baseline configuration. The corresponding optimum flange height was found to be 250 mm. However, increasing the divergence angle had a similar output. The dimensionless location of wind turbine was found to be between 0.45 and 0.5 for 2° and 4° divergence angle respectively. Furthermore, the maximum augmentation location varies with wind speed and diffuser’s divergence angle as described by dimensionless location of wind turbine, thus presenting a noteworthy contribution to the horizontal axis wind turbine area with the flanged diffuser.
A series of regioselective β-disubstituted meso-tetraphenylporphyrins, H2TPP(X)2 where X = methyl (CH3), phenyl (Ph) and phenylethynyl (PE) as well their metal complexes (Cu(II), Co(II), Ni(II) and Zn(II)) were synthesized and...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.