The apolipoprotein E4 (APOE4) variant is the single greatest genetic risk factor for sporadic Alzheimer's disease (sAD). However, the cell-type-specific functions of APOE4 in relation to AD pathology remain understudied. Here, we utilize CRISPR/Cas9 and induced pluripotent stem cells (iPSCs) to examine APOE4 effects on human brain cell types. Transcriptional profiling identified hundreds of differentially expressed genes in each cell type, with the most affected involving synaptic function (neurons), lipid metabolism (astrocytes), and immune response (microglia-like cells). APOE4 neurons exhibited increased synapse number and elevated Aβ secretion relative to isogenic APOE3 cells while APOE4 astrocytes displayed impaired Aβ uptake and cholesterol accumulation. Notably, APOE4 microglia-like cells exhibited altered morphologies, which correlated with reduced Aβ phagocytosis. Consistently, converting APOE4 to APOE3 in brain cell types from sAD iPSCs was sufficient to attenuate multiple AD-related pathologies. Our study establishes a reference for human cell-type-specific changes associated with the APOE4 variant. VIDEO ABSTRACT.
The dismal success rate of clinical trials for Alzheimer’s disease (AD) motivates us to develop model systems of AD pathology that have higher predictive validity. The advent of induced pluripotent stem cells (iPSCs) allows us to model pathology and study disease mechanisms directly in human neural cells from healthy individual as well as AD patients. However, two-dimensional culture systems do not recapitulate the complexity of neural tissue, and phenotypes such as extracellular protein aggregation are difficult to observe. We report brain organoids that use pluripotent stem cells derived from AD patients and recapitulate AD-like pathologies such as amyloid aggregation, hyperphosphorylated tau protein, and endosome abnormalities. These pathologies are observed in an age-dependent manner in organoids derived from multiple familial AD (fAD) patients harboring amyloid precursor protein (APP) duplication or presenilin1 (PSEN1) mutation, compared to controls. The incidence of AD pathology was consistent amongst several fAD lines, which carried different mutations. Although these are complex assemblies of neural tissue, they are also highly amenable to experimental manipulation. We find that treatment of patient-derived organoids with β- and γ-secretase inhibitors significantly reduces amyloid and tau pathology. Moreover, these results show the potential of this model system to greatly increase the translatability of pre-clinical drug discovery in AD.
Microneedles are emerging as a minimally invasive drug delivery alternative to hypodermic needles. Current material systems utilized in microneedles impose constraints hindering the further development of this technology. In particular, it is difficult to preserve sensitive biochemical compounds (such as pharmaceuticals) during processing in a single microneedle system and subsequently achieve their controlled release. A possible solution involves fabricating microneedles systems from the biomaterial silk fibroin. Silk fibroin combines excellent mechanical properties, biocompatibility, biodegradability, benign processing conditions, and the ability to preserve and maintain the activity of biological compounds entrained in its material matrix. The degradation rate of silk fibroin and the diffusion rate of the entrained molecules can be controlled simply by adjusting post‐processing conditions. This combination of properties makes silk an ideal choice to improve on existing issues associated with other microneedle‐based drug delivery system. In this study, a fabrication method to produce silk biopolymer microstructures with the high aspect ratios and mechanical properties required to manufacture microneedle systems is reported. Room temperature and aqueous‐based micromolding allows for the bulk loading of these microneedles with labile drugs. The drug release rate is decreased 5.6‐fold by adjusting the post‐processing conditions of the microneedles, mainly by controlling the silk protein secondary structure. The release kinetics are quantified in an in vitro collagen hydrogel model, which allows tracking of the model drug. Antibiotic loaded silk microneedles are manufactured and used to demonstrate a 10‐fold reduction of bacterial density after their application. The processing strategies developed in this study can be expanded to other silk‐based structural formats for drug delivery and biologicals storage applications.
Highlights d A series of oxadiazoles were identified that ameliorate a-synuclein toxicity in yeast d Oxadiazoles directly inhibit yeast (Ole1) and human (SCD) stearoyl-CoA desaturases d Inhibiting Ole1 restored a-synuclein localization and reversed trafficking defects d Inhibiting SCD protected human neurons from a-synuclein toxicity Authors
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.