Rabigh Lagoon, located on the eastern coast of the Red Sea, is an ecologically rich zone in Saudi Arabia, providing habitat to Avicennia marina mangrove trees. The environmental quality of the lagoon has been decaying since the 1990s mainly from sedimentation, road construction, and camel grazing. However, because of remedial measures, the mangrove communities have shown some degree of restoration. This study aims to monitor mangrove health of Rabigh Lagoon during the time it was under stress from road construction and after the road was demolished. For this purpose, time series of EVI (Enhanced Vegetation Index), MSAVI (Modified, Soil-Adjusted Vegetation Index), NDVI (Normalized Difference Vegetation Index), and NDMI (Normalized Difference Moisture Index) have been used as a proxy to plant biomass and indicator of forest disturbance and recovery. Long-term trend patterns, through linear, least square regression, were estimated using 30 m annual Landsat surface-reflectance-derived indices from 1986 to 2019. The outcome of this study showed (1) a positive trend over most of the study region during the evaluation period; (2) most trend slopes were gradual and weakly positive, implying subtle changes as opposed to abrupt changes; (3) all four indices divided the times series into three phases: degraded mangroves, slow recovery, and regenerated mangroves; (4) MSAVI performed best in capturing various trend patterns related to the greenness of vegetation; and (5) NDMI better identified forest disturbance and recovery in terms of water stress. Validating observed patterns using only the regression slope proved to be a challenge. Therefore, water quality parameters such as salinity, pH/dissolved oxygen should also be investigated to explain the calculated trends.
Cancer is the second-ranked disease and a cause of death for millions of people around the world despite many kinds of available treatments. Phytochemicals are considered a vital source of cancer-inhibiting drugs and utilize specific mechanisms including carcinogen inactivation, the induction of cell cycle arrest, anti-oxidant stress, apoptosis, and regulation of the immune system. Family Fabaceae is the second most diverse family in the plant kingdom, and species of the family are widely distributed across the world. The species of the Fabaceae family are rich in phytochemicals (flavonoids, lectins, saponins, alkaloids, carotenoids, and phenolic acids), which exhibit a variety of health benefits, especially anti-cancer properties; therefore, exploration of the phytochemicals present in various members of this family is crucial. These phytochemicals of the Fabaceae family have not been explored in a better way yet; therefore, this review is an effort to summarize all the possible information related to the phytochemical status of the Fabaceae family and their anti-cancer properties. Moreover, various research gaps have been identified with directions for future research.
Over the past few decades, there has been a rapid change in forest and land cover, especially in tropical forests due to massive deforestation. The major factor responsible for the changes is to fulfill the growing demand of increasing population through agricultural intensification, rural settlements, and urbanization. Monitoring forest cover and vegetation are essential for detecting regional and global environmental changes. The present study evaluates the influence of deforestation on land surface temperature (LST) in the states of Kedah and Perak, Malaysia, between 1988 and 2017. The trend in forest cover change over the time span of 29 years, was analyzed using Landsat 5 and Landsat 8 satellite images to map the sequence of forest cover change. With the measurement of deforestation and its relationship with LST as an end goal, the Normalized Difference Vegetation Index (NDVI) was used to determine forest health, and the spectral radiance model was used to extract the LST. The findings of the study show that nearly 16% (189,423 ha) of forest cover in Perak and more than 9% (33,391 ha) of forest cover in Kedah have disappeared within these 29 years as a result of anthropogenic activities. The correlation between the LST and NDVI is related to the distribution of forests, where LST is inversely related to NDVI. A strong correlation between LST and NDVI was observed in this study, where the average mean of LST in Kedah (25 °C) is higher than in Perak (22.6 °C). This is also reflected by the decreased NDVI value from 0.6 to 0.5 in 2017 at both states. This demonstrated that a decrease in the vegetation area leads to an increase in the surface temperature. The resultant forest change map would be helpful for forest management in terms of identifying highly vulnerable areas. Moreover, it could help the local government to formulate a land management plan.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.