T helper type (Th17) cytokines such as interleukin (IL)-17A and IL-22 are important in maintaining mucosal barrier function and may be important in the pathogenesis of inflammatory bowel diseases (IBDs). Here, we analyzed cells from the colon of IBD patients and show that Crohn’s disease (CD) patients had significantly elevated numbers of IL-17+, CD4+ cells compared with healthy controls and ulcerative colitis (UC) patients, but these numbers did not vary based on the inflammatory status of the mucosa. By contrast, UC patients had significantly reduced numbers of IL-22+ cells in actively inflamed tissues compared with both normal tissue and healthy controls. There was a selective increase in mono-IL-17-producing cells from the mucosa of UC patients with active inflammation together with increased expression of transforming growth factor (TGF)-β and c-Maf. Increasing concentrations of TGF-β in lamina propria mononuclear cell cultures significantly depleted Th22 cells, whereas anti-TGF-β antibodies increased IL-22 production. When mucosal microbiota was examined, depletion of Th22 cells in actively inflamed tissue was associated with reduced populations of Clostridiales and increased populations of Proteobacteria. These results suggest that increased TGF-β during active inflammation in UC may lead to the loss of Th22 cells in the human intestinal mucosa.
In this prospective multicenter study, we found that although competence cannot be confirmed for all AETs at the end of training, most meet QI thresholds for EUS and ERCP at the end of their first year of independent practice. This finding affirms the effectiveness of training programs. Clinicaltrials.gov ID NCT02509416.
Background and Aims-Minimum EUS and ERCP volumes that should be offered per trainee in "high quality" advanced endoscopy training programs (AETPs) are not established. We aimed to define the number of procedures required by an "average" advanced endoscopy trainee (AET) to achieve competence in technical and cognitive EUS and ERCP tasks to help structure AETPs. Methods-ASGE-recognized AETPs were invited to participate; AETs were graded on every fifth EUS and ERCP examination using a validated tool. Grading for each skill was done using a 4-point scoring system and learning curves (LCs) using cumulative sum (CUSUM) analysis for overall, technical, and cognitive components of EUS and ERCP were shared with AETs and trainers quarterly. Generalized linear mixed effects models with a random intercept for each AET were used to generate aggregate LCs allowing us to use data from all AETs to estimate the average learning experience for trainees. Results-Among 62 invited AETPs, 37 AETs from 32 AETPs participated. The majority of AETs reported hands-on EUS (52%, median 20 cases) and ERCP (68%, median 50 cases) experience before starting an AETP. The median number of EUS and ERCPs performed/AET was 400 (range 200-750) and 361 (250-650), respectively. Overall, 2616 examinations were graded
Background Inflammation during inflammatory bowel disease (IBD) may alter nutrient availability to adherent mucosal bacteria and impact their metabolic function. Microbial metabolites may regulate intestinal CD4+ T cell homeostasis. We investigated the relationship between inflammation and microbial function by inferred metagenomics of the mucosal microbiota from colonic pinch biopsies of IBD patients. Methods Paired pinch biopsy samples of known inflammation states were analyzed from UC (23), CD (21) and controls (24) by 16S ribosomal sequencing, histopathology and flow cytometry. PICRUSt was used to generate metagenomic data, and derive relative Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway abundance information. Leukocytes were isolated from paired biopsy samples and analyzed by multi-color flow cytometry. Active inflammation was defined by neutrophil infiltration into the epithelium Results Carriage of metabolic pathways in the mucosal microbiota was relatively stable among IBD patients despite large variations in individual bacterial community structures. However, microbial function was significantly altered in inflamed tissue of UC patients, with a reduction in carbohydrate and nucleotide metabolism in favor of increased lipid and amino acid metabolism. These differences were not observed in samples from CD patients. In CD, microbial lipid, carbohydrate, and amino acid metabolism was tightly correlated with frequency of CD4+Foxp3+ Tregs, whereas in UC these pathways were correlated with frequency of CD4+IL-22+ (TH22) cells. Conclusions Metabolic pathways of the mucosal microbiota in CD do not vary as much as UC with inflammation state, indicating a more systemic perturbation of host-bacteria interactions in CD compared to more localized dysfunction in UC.
The effectiveness of Roux-en-Y gastric bypass (RYGB) against obesity and its comorbidities has generated excitement about developing new, less invasive treatments that use the same molecular mechanisms. Although controversial, RYGB-induced improvement of metabolic function may not depend entirely upon weight loss. To elucidate the differences between RYGB and dieting, we studied several individual organ molecular responses and generated an integrative, interorgan view of organismal physiology. We also compared murine and human molecular signatures. We show that, although dieting and RYGB can bring about the same degree of weight loss, post-RYGB physiology is very different. RYGB induces distinct, organ-specific adaptations in a temporal pattern that is characterized by energetically demanding processes, which may be coordinated by HIF1a activation and the systemic repression of growth hormone receptor signaling. Many of these responses are conserved in rodents and humans and may contribute to the remarkable ability of surgery to induce and sustain metabolic improvement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.