BackgroundAcellular Pertussis vaccines against whooping cough caused by Bordetella pertussis present a much-improved safety profile compared to the original vaccine of killed whole cells. The principal antigen of acellular Pertussis vaccine, Pertussis Toxin (PT), must be chemically inactivated to obtain the corresponding toxoid (PTd). This process, however, results in extensive denaturation of the antigen. The development of acellular Pertussis vaccines containing PTd or recombinant PT (rPT) with inactivated S1, Filamentous Hemagglutinin (FHA), and Pertactin (PRN) has shown that the yield of PRN was limiting, whereas FHA was overproduced. To improve antigen yields and process economics, we have constructed strains of Bordetella pertussis that produce enhanced levels of both rPT and PRN.ResultsThree recombinant strains of Bordetella pertussis were obtained by homologous recombination using an allelic exchange vector, pSS4245. In the first construct, the segment encoding PT subunit S1 was replaced by two mutations (R9K and E129G) that removed PT toxicity and Bp-WWC strain was obtained. In the second construct, a second copy of the whole cluster of PT structural genes containing the above mutations was inserted elsewhere into the chromosome of Bp-WWC and the Bp-WWD strain was obtained. This strain generated increased amounts of rPT (3.77 ± 0.53 μg/mL) compared to Bp-WWC (2.61 ± 0.16 μg/mL) and wild type strain (2.2 μg/mL). In the third construct, a second copy of the prn gene was inserted into the chromosome of Bp-WWD to obtain Bp-WWE. Strain Bp-WWE produced PRN at 4.18 ± 1.02 μg/mL in the cell extract which was about two-fold higher than Bp-WWC (2.48 ± 0.10 μg/mL) and Bp-WWD (2.31 ± 0.17 μg/mL). Purified PTd from Bp-WWD at 0.8-1.6 μg/well did not show any toxicity against Chinese hamster ovary (CHO) cell whereas purified PT from WT demonstrated a cell clustering endpoint at 2.6 pg/well.ConclusionsWe have constructed Bordetella pertussis strains expressing increased amounts of the antigens, rPT or rPT and PRN. Expression of the third antigen, FHA was unchanged (always in excess). These strains will be useful for the manufacture of affordable acellular Pertussis vaccines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.