Thromboembolic complication occurs frequently in β-thalassaemia/HbE patients, particularly in splenectomised patients. Endothelial cells play an important role in thrombosis. There is strong evidence of endothelial cell activation and dysfunction in β-thalassaemia. Microparticles (MPs) are associated with thrombosis and endothelial cell dysfunction in many diseases including β-thalassaemia. However, the effect of thalassaemic-MPs on endothelial cells mediating thrombus formation has not been elucidated. In this study, the effects of circulating MPs from β-thalassaemia/HbE patients on endothelial cell functions were investigated. The results showed that MPs directly induce tissue factor, interleukin (IL)-6, IL-8, intracellular adhesion molecule-1, vascular cell adhesion molecule-1 and E-selectin expression in human umbilical vein endothelial cells (HUVECs). Notably, the levels of these endothelial cell activation markers were significantly increased in HUVECs treated with MPs obtained from splenectomised β-thalassaemia/HbE patients when compared to MPs from non-splenectomised patients or normal subjects. The increased endothelial cell activation ultimately lead to increased monocyte-endothelial cell adhesion. THP-1 and HUVECs adhesion induced by MPs from normal subjects, non-splenectomised and splenectomised patients increased to 2.0 ± 0.4, 2.3 ± 0.4 and 3.8 ± 0.4 fold, respectively when compared to untreated cells. This finding suggests that MPs play an important role on thrombosis and vascular dysfunction in β-thalassaemia/HbE disease, especially in splenectomised cases.
Thromboembolic events including cerebral thrombosis, deep vein thrombosis, and pulmonary embolism are major complications in β-thalassemia. Damaged red blood cells and chronic platelet activation in splenectomized β-thalassemia/HbE patients were associated with increased microparticles (MPs) releases into blood circulation. MPs are small membrane vesicles, which play important roles on coagulation. However, the role of MP in thalassemia is poorly understood. In this study, the effects of splenectomized-MPs on platelet activation and aggregation were investigated. The results showed that isolated MPs from fresh platelet-free plasma of patients and normal subjects directly induce platelet activation, platelet aggregation, and platelet-neutrophil aggregation in a dose-dependent manner. Interestingly, MPs obtained from splenectomized patients are more efficient in induction of platelet activation (P-selectin) when compared to MPs from normal subjects (P < 0.05), tenfold lower than pathophysiological level, at 1:0.1 platelet MP ratio. Co-incubation of splenectomized-MPs with either normal-, non-splenectomized- or splenectomized-platelets at 1:10 platelet MP ratio increased platelet activation up to 5.1 ± 2.2, 5.6 ± 3.7, and 9.5 ± 3.0%, respectively, when normalized with individual baseline. These findings suggest that splenectomized patients were proned to be activated by MPs, and splenectomized-MPs could play an important role on chronic platelet activation and aggregation, leading to thrombus formation in β-thalassemia/HbE patients.
Objective:Thalassemia is one of the genetic diseases that cause anemia and ineffective erythropoiesis. Increased levels of several inflammatory cytokines have been reported in β-thalassemia and might contribute to ineffective erythropoiesis. However, the mechanism by which tumor necrosis factor-alpha (TNF-α) is involved in ineffective erythropoiesis in thalassemic patients remains unclear. The objective of this study is to investigate the effect of TNF-α on the erythropoietin (EPO) and erythropoietin receptor (EPOR) expression involved in proliferation of β-thalassemia/hemoglobin (Hb) E erythroid progenitor cells compared with cells from healthy subjects.Materials and Methods:CD34-positive cells were isolated from heparinized blood by using the EasySep® CD34 selection kit. Cells were then cultured with suitable culture medium in various concentrations of EPO for 14 days. The effect of TNF-α on percent cell viability was analyzed by trypan blue staining. In addition, the percentage of apoptosis and levels of EPOR protein were measured by flow cytometry.Results:Upon EPO treatment, a higher cell number was observed for erythroid progenitor cells from both healthy participants and β-thalassemia/Hb E patients. However, a reduction of apoptosis was found in EPO-treated cells especially for β-thalassemia/Hb E patients. Interestingly, TNF-α caused higher levels of cell apoptosis and lower levels of EPOR protein in thalassemic erythroid progenitor cells.Conclusion:TNF-α caused a reduction in the level of EPOR protein and EPO-induced erythroid progenitor cell proliferation. It is possible that TNF-α could be involved in the mechanism of ineffective erythropoiesis in β-thalassemia/Hb E patients.
Background/Aim: β-Thalassemia/hemoglobin E (β-thal/HbE) is a common hereditary anemia in Thailand. Ineffective erythropoiesis due to apoptosis and decreased lifespan of circulating thalassemic red blood cells are the major causes of anemia. Changes to bone marrow microenvironment could contribute to apoptotic events. This study examined the effects of cytokines interleukin-1β, tumor necrosis factor-α and interferon-γ on apoptosis of β-thal/HbE erythroid progenitor cells in vitro, including nitric oxide-mediated apoptotic processes. Methods: Percent apoptosis of erythroid progenitor cells from 5 β-thal/HbE patients and 5 normal control subjects was examined using flow cytometry. In addition, the inducible nitric oxide synthase (iNOS) mRNA level and nitrite production were measured using quantitative PCR and the Griess method, respectively. Results: Upon cytokine treatment, a higher percent apoptosis was obtained with β-thal/HbE erythroid progenitor cells compared with control, and the maximum effect was observed using 20 ng/ml interferon-γ on day 14 of culture. There was an increase in iNOS mRNA level and a concomitant elevation of nitrite concentration in culture medium. Apoptosis and nitrite level were abrogated when β-thal/HbE and control cells were treated with S-methylisothiourea sulfate, an iNOS inhibitor. Conclusion: The marked sensitivity of erythroid progenitor cells from β-thal/HbE patients to cytokine-induced apoptosis via an NO-mediated process reflects a proapoptotic status of such thalassemic red blood cells.
Proinflammatory cytokines play a role in the pathogenesis of anemia of chronic disease (ACD), which is a common cause of anemia in rheumatoid arthritis (RA). Anemia in RA is associated with increased apoptosis of erythroid cells. However, there is unclear information on the mechanism of ACD in the disease. The purpose of this study is to investigate the role of cytokines on nitric oxide-mediated apoptosis in erythroid progenitor cells of ACD in RA patients. Erythroid progenitor cells from healthy subjects and RA patients with ACD were treated with cytokines like interleukin-1β, tumor necrosis factor-α, and interferon-γ at concentrations of 2, 20, and 40 ng/ml for 14 days. Cell viability and cell apoptosis were analyzed by trypan blue staining and flow cytometry, respectively. The results showed that the highest effect of cytokines on reduction cell viability and induction cell apoptosis was found in 20 ng/ml IFN-γ-treated cells of RA patients. In addition, IFN-γ showed significantly increased nitric oxide production and iNOS mRNA expression, which was measured by Griess assay and real-time PCR, respectively. The percentage of cell apoptosis and NO production was reduced after an inducible nitric oxide synthase inhibitor, SMT, treatment. In conclusion, IFN-γ could induce nitric oxide production-mediated apoptosis process, which might be involved in the pathogenesis of ACD in RA patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.