Model inversion Iterative Learning Control (ILC) for a class of nonsquare linear time variant/invariant multi-input multi-output (MIMO) systems is considered in this paper. A new ILC algorithm is developed based on σ-right inversion of nonsquare learning gain matrices to resolve the matrix inversion problems appeared in the direct model inversion of nonsquare MIMO systems. Furthermore, a sufficient and necessary monotonic convergence condition is established. With rigorous analysis, the proposed ILC scheme guarantees the convergence of the tracking error. To prove the effectiveness and to illustrate the performance of the proposed approach for linear time-invariant (LTI) and time-varying nonsquare systems, two illustrative examples are simulated.
This paper proposes the design of fixed low order controllers for Multi Input Multi Output (MIMO) decoupled systems. The simplified decoupling is used as a decoupling system technique due to its advantages compared to other decoupling methods. The main objective of the proposed controllers is to satisfy some desired closed loop step response performances such as the settling time and the overshoot. The controller design is formulated as an optimization problem which is non convex and it takes in account the desired closed loop performances. Therefore, classical methods used to solve the non convex optimization problem can generate a local solution and the resulting control law is not optimal. Thus, the thought is to use a global optimization method in order to obtain an optimal solution which will guarantee the desired time response specifications. In this work the Generalized Geometric Programming (GGP) is exploited as a global optimization method. The key idea of this method consists in transforming an optimization problem, initially, non convex to a convex one by some mathematical transformations. Simulation results and a comparison study between the presented approach and a Proportional Integral (PI) controller are given in order to shed light the efficiency of the proposed controllers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.