The unprecedented growth in production and exchange of multimedia over unsecured channels is overwhelming mathematicians, scientists and engineers to realize secure and efficient cryptographic algorithms. In this paper, a color image encryption algorithm combining the KAA map with multiple chaotic maps is proposed. The proposed algorithm makes full use of Shannon's ideas of security, such that image encryption is carried out through bit confusion and diffusion. Confusion is carried out through employing 2 encryption keys. The first key is generated from the 2D Logistic Sine map and a Linear Congruential Generator, while the second key is generated from the Tent map and the Bernoulli map. Diffusion is attained through the use of the KAA map. An elaborate mathematical analysis is carried out to showcase the robustness and efficiency of the proposed algorithm, as well as its resistance to visual, statistical, differential and brute-force attacks. Moreover, the proposed image encryption algorithm is also shown to successfully pass all the tests of the NIST SP 800 suite.
The exponential growth in transmission of multimedia over the Internet and unsecured channels of communications is putting pressure on scientists and engineers to develop effective and efficient security schemes. In this paper, an image encryption scheme is proposed to help solve such a problem. The proposed scheme is implemented over three stages. The first stage makes use of Rule 30 cellular automata to generate the first encryption key. The second stage utilizes a well-tested S-box, whose design involves a transformation, modular inverses, and permutation. Finally, the third stage employs a solution of the Lorenz system to generate the second encryption key. The aggregate effect of this 3-stage process insures the application of Shannon’s confusion and diffusion properties of a cryptographic system and enhances the security and robustness of the resulting encrypted images. Specifically, the use of the PRNG bitstreams from both of the cellular automata and the Lorenz system, as keys, combined with the S-box, results in the needed non-linearity and complexity inherent in well-encrypted images, which is sufficient to frustrate attackers. Performance evaluation is carried out with statistical and sensitivity analyses, to check for and demonstrate the security and robustness of the proposed scheme. On testing the resulting encrypted Lena image, the proposed scheme results in an MSE value of 8923.03, a PSNR value of 8.625 dB, an information entropy of 7.999, NPCR value of 99.627, and UACI value of 33.46. The proposed scheme is shown to encrypt images at an average rate of 0.61 Mbps. A comparative study with counterpart image encryption schemes from the literature is also presented to showcase the superior performance of the proposed scheme.
The need for information security has become urgent due to the constantly changing nature of the Internet and wireless communications, as well as the daily generation of enormous volumes of multimedia. In this paper, a 3-stage image cryptosystem is developed and proposed. A tan variation of the logistic map is utilized to carry out deoxyribonucleic acid (DNA) encoding in the first stage. For the second encryption stage, the numerical solution of the Lorenz differential equations and a linear descent algorithm are jointly employed to build a robust S-box. The logistic map in its original form is utilized in the third stage. Diffusion is guaranteed through the first and third encryption stages, while confusion is guaranteed through the application of the S-box in the second encryption stage. Carrying out both confusion- and diffusion-inducing stages results in encrypted images that are completely asymmetric to their original (plain) counterparts. An extensive numerical analysis is carried out and discussed, showcasing the robustness and efficacy of the proposed algorithm in terms of resistance to visual, statistical, entropy, differential, known plaint text and brute-force attacks. Average values for the computed metrics are: Information entropy of 7.99, MSE of 9704, PSNR of 8.3 dB, MAE of 80.8, NPCR of 99.6 and UACI of 33. The proposed algorithm is shown to exhibit low computational complexity, encrypting images at an average rate of 1.015 Mbps. Moreover, it possesses a large key space of 2372, and is demonstratd to successfully pass all the tests of the NIST SP 800 suite. In order to demonstrate the superior performance of the proposed algorithm, a comparison with competing image encryption schemes from the literature is also provided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.