In this study, we focus on improving the efficiency and accuracy of nonrigid multi-modality registration of medical images. In this regard, we analyze the potentials of using the point similarity measurement approach as an alternative to global computation of mutual information (MI), which is still the most renown multi-modality similarity measure. The improvement capabilities are illustrated using the popular B-spline transformation model. The proposed solution is a combination of three related improvements of the most straightforward implementation, i.e., efficient computation of the voxel displacement field, local estimation of similarity and usage of a static image intensity dependence estimate. Five image registration prototypes were implemented to show contribution and dependence of the proposed improvements. When all the proposed improvements are applied, a significant reduction of computational cost and increased accuracy are obtained. The concept offers additional improvement opportunities by incorporating prior knowledge and machine learning techniques into the static intensity dependence estimation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.